1000 resultados para Countercurrent distribution
Resumo:
Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q (q) over bar annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.
Resumo:
In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.
Resumo:
Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The stereology, variant distribution and coarsening behavior of semicoherent alpha(hcp) precipitates in a beta(bcc) matrix of a Ti5553 alloy has been analyzed, and a dominant 3-variant cluster has been observed in which the variants are related to each other by an axis-angle pair <<11(2)over bar> 0 >/60 degrees. Shape and spatial distribution independent elastic self and interaction energies for all pairwise and triplet combinations of a have been calculated and it is found that the 3-cluster combination that is experimentally observed most frequently has the lowest energy for the semicoherent state. The coarsening behavior of the delta distribution follows LSW kinetics after an initial transient, and has been modeled by phase field methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...
Resumo:
A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
The linear diffusion-reaction theory with finite interface kinetics is employed to describe the dissolution and the growth processes. The results show that it is imperative to consider the effect of the moving interfaces on the concentration distribution at the growth interface for some cases. For small aspect ratio and small gravity magnitude, the dissolution and the growth interfaces must be treated as the moving boundaries within an angle range of 0 degrees < gamma < 50 degrees in this work. For large aspect ratio or large gravity magnitude, the effect of the moving interfaces on the concentration distribution at the growth interface can be neglected except for gamma < - 50 degrees.
Resumo:
The events that determine the dynamics of proliferation, spread and distribution of microbial pathogens within their hosts are surprisingly heterogeneous and poorly understood. We contend that understanding these phenomena at a sophisticated level with the help of mathematical models is a prerequisite for the development of truly novel, targeted preventative measures and drug regimes. We describe here recent studies of Salmonella enterica infections in mice which suggest that bacteria resist the antimicrobial environment inside host cells and spread to new sites, where infection foci develop, and thus avoid local escalation of the adaptive immune response. We further describe implications for our understanding of the pathogenic mechanism inside the host.
Resumo:
The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.
Resumo:
The thermodynamical model of intermittency in fully developed turbulence due to Castaing (B. Castaing, J. Phys. II France 6 (1996) 105) is investigated and compared with the log-Poisson model (Z-S, She, E. Leveque, Phys. Rev. Lett. 72 (1994) 336). It is shown that the thermodynamical model obeys general scaling laws and corresponds to the degenerate class of scale-invariant statistics. We also find that its structure function shapes have physical behaviors similar to the log-Poisson's one. The only difference between them lies in the convergence of the log-Poisson's structure functions and divergence of the thermodynamical one. As far as the comparison with experiments on intermittency is concerned, they are indifferent.
Resumo:
由于采用非均匀布风,内旋流流化床的移动区空气量不足,导致燃烧不充分,温度较低。当移动区未流化时,密相区内存在较明显的温度不均匀性。随着移动区流速的提高,温度差迅速减小。当移动区流速超过2.0#mu#m后,密相区温度基本均匀一致。流动区流速对密相区温度均匀有一定的影响,流速越高,温度越均匀。
Resumo:
An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.