958 resultados para Cost Optimization
Resumo:
Hospitals invest considerable resources organizing operating suites and having surgeons and theatre staff available on an agreed schedule. A common impediment to efficiency is perioperative delay,including delays getting to the operating room or during the operation. Perioperative delays entail significant costs for hospitals,wasting staff time and operating theatre resources. They may also affect patient outcomes; prolonged surgery is a predictor for unanticipated admission following elective ambulatory surgery...
Resumo:
This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.
Resumo:
The European Union‐funded collaborative network, COST Action TU1101: Towards safer bicycling through optimization of bicycle helmets and usage, aims to increase scientific knowledge about bicycle helmets in regards to traffic safety and to disseminate this knowledge to stakeholders, including cyclists, legislators, manufacturers, and the scientific community. The COST research team has developed a uniform international survey to better understand attitudinal and other factors that may influence bicycle and helmet usage, as well as crash risk. The online survey is being distributed by project partners in Europe, Israel, Australia, and potentially the US and Canada. The survey contains four types of questions: (1) biographical data, (2) frequency of cycling and amount of cycling for different purposes (e.g., commuting, health, recreation) and in different environments (e.g., bicycle trails, bike lanes, on sidewalks, in traffic), (3) frequency and circumstances for use and non‐use of helmets, attitudes and reasons for it, and; (4) crash involvement and level of reporting to the police. While the potential value of comparative data across countries with very different cycling cultures and safety levels is substantial, there are numerous challenges in developing, conducting, and analyzing the results of the survey. This presentation will focus on the scope of the international study, methodological issues and pitfalls of such a collaborative effort, and on initial results from one country (Israel). To illustrate, two findings from the preliminary Israeli survey indicate that: (1) none of the crashes were reported to the police including the ones involving hospital admission. Although underreporting of bicycle crashes by police is well documented in all countries the extent is unknown, and can be extreme. (2) Older riders tend to ride more for health/exercise reasons, while younger riders tend to ride more for commuting. Thus there is an interaction between riders’ age and the place and times of riding.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.
Resumo:
Introduced predators can have pronounced effects on naïve prey species; thus, predator control is often essential for conservation of threatened native species. Complete eradication of the predator, although desirable, may be elusive in budget-limited situations, whereas predator suppression is more feasible and may still achieve conservation goals. We used a stochastic predator-prey model based on a Lotka-Volterra system to investigate the cost-effectiveness of predator control to achieve prey conservation. We compared five control strategies: immediate eradication, removal of a constant number of predators (fixed-number control), removal of a constant proportion of predators (fixed-rate control), removal of predators that exceed a predetermined threshold (upper-trigger harvest), and removal of predators whenever their population falls below a lower predetermined threshold (lower-trigger harvest). We looked at the performance of these strategies when managers could always remove the full number of predators targeted by each strategy, subject to budget availability. Under this assumption immediate eradication reduced the threat to the prey population the most. We then examined the effect of reduced management success in meeting removal targets, assuming removal is more difficult at low predator densities. In this case there was a pronounced reduction in performance of the immediate eradication, fixed-number, and lower-trigger strategies. Although immediate eradication still yielded the highest expected minimum prey population size, upper-trigger harvest yielded the lowest probability of prey extinction and the greatest return on investment (as measured by improvement in expected minimum population size per amount spent). Upper-trigger harvest was relatively successful because it operated when predator density was highest, which is when predator removal targets can be more easily met and the effect of predators on the prey is most damaging. This suggests that controlling predators only when they are most abundant is the "best" strategy when financial resources are limited and eradication is unlikely. © 2008 Society for Conservation Biology.
Resumo:
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.