843 resultados para Cortical dysplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alzheimer's disease (AD), neurofibrillary tangles (NFT) occur within neurons in both the upper and lower cortical laminae. Using a statistical method that estimates the size and spacing of NFT clusters along the cortex parallel to the pia mater, two hypotheses were tested: 1) that the cluster size and distribution of the NFT in gyri of the temporal lobe reflect degeneration of the feedforward (FF) and feedback (FB) cortico-cortical pathways, and 2) that there is a spatial relationship between the clusters of NFT in the upper and lower laminae. In 16 temporal lobe gyri from 10 cases of sporadic AD, NFT were present in both the upper and lower laminae in 11/16 (69%) gyri and in either the upper or lower laminae in 5/16 (31%) gyri. Clustering of the NFT was observed in all gyri. A significant peak-to-peak distance was observed in the upper laminae in 13/15 (87%) gyri and in the lower laminae in 8/ 12 (67%) gyri, suggesting a regularly repeating pattern of NFT clusters along the cortex. The regularly distributed clusters of NFT were between 500 and 800 μm in size, the estimated size of the cells of origin of the FF and FB cortico-cortical projections, in the upper laminae of 6/13 (46%) gyri and in the lower laminae of 2/8 (25%) gyri. Clusters of NFT in the upper laminae were spatially correlated (in phase) with those in the lower laminae in 5/16 (31%) gyri. The clustering patterns of the NFT are consistent with their formation in relation to the FF and FB cortico-cortical pathways. In most gyri, NFT clusters appeared to develop independently in the upper and lower laminae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eight cases of progressive supranuclear palsy (PSP), neurofibrillary tangles (NFT) were numerous in the substantia nigra (SN), red nucleus (RN), locus caeruleus (LC), pontine nuclei (PN), and inferior olivary nucleus (ION) and abnormally enlarged neurons (EN) in the ION, LC and PN. Loss of Purkinje cells was evident in the cerebellum. Tufted astrocytes (TA) were abundant in the striatum, SN and RN and glial inclusions ('coiled bodies') (GI) in the midbrain (SN, RN) and pons (LC). Neuritic plaques were frequent in one case. NFT, GI, and TA densities were uncorrelated in most areas. NFT and EN densities were positively correlated in the midbrain and surviving neurons and disease duration in several areas. These results suggest: 1) predominantly subcortical pathology in PSP with widespread NFT while TA and GI have a more localized distribution, 2) little correlation between neuronal and glial pathologies, and 3) shorter duration cases may be more likely to develop cortical pathology. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To study the topography of neurofibrillary tangles (NFT) in cortical and subcortical areas in progressive supranuclear palsy (PSP). Methods: Pattern analysis was carried out on tau-positive NFT in eight PSP cases. Results: Of the areas studied, NFT were randomly distributed in 68%, regularly distributed in 3%, and clustered in 29%. A regular distribution of clusters was more frequent in cortical than subcortical areas. Conclusion: NFT topography in subcortical areas was similar to inclusions in the synucleinopathy multiple system atrophy (MSA) but in cortical areas was comparable to other tauopathies. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of morphological abnormalities in neuronal perikarya was studied in the cerebral cortex in cases of sporadic CJD (sCJD) and in elderly control patients. Three hypotheses were tested, namely that the proportion of neurons exhibiting abnormal morphology was increased: (i) in sCJD compared with control patients; (ii) in sCJD, in areas with significant prion protein (PrP) deposition compared with regions with little or no PrP deposition; and (iii) when neurons were spatially associated with a PrP deposit compared with neurons between PrP deposits. Changes in cell shape (swollen or atrophic cell bodies), nuclei (displaced, indistinct, shrunken or absent nuclei; absence of nucleolus), and cytoplasm (dense or pale cytoplasm, PrP positive cytoplasm, vacuolation) were commonly observed in all of the cortical areas studied in the sCJD cases. The proportion of neurons exhibiting each type of morphological change was significantly increased in sCJD compared with age-matched control cases. In sCJD, neuronal abnormalities were present in areas with little PrP deposition, but at significantly lower frequencies compared with areas with significant densities of PrP deposits. Abnormalities of cell shape, nucleus and the presence of cytoplasmic vacuolation were increased when the neurons were associated with a PrP deposit, but fewer of these neurons were PrP-positive compared with neurons between deposits. The data suggest significant neuronal degeneration in the cerebral cortex in sCJD in areas without significant PrP deposition and a further phase of neuronal degeneration associated with the appearance of PrP deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent animal studies highlighting the relationship between functional imaging signals and the underlying neuronal activity have revealed the potential capabilities of non-invasive methods. However, the valuable exchange of information between animal and human studies remains restricted by the limited evidence of direct physiological links between species. In this study we used magnetoencephalography (MEG) to investigate the occurrence of 30-70 Hz (gamma) oscillations in human visual cortex, induced by the presentation of visual stimuli of varying contrast. These oscillations, well described in the animal literature, were observed in retinotopically concordant locations of visual cortex and show striking similarity to those found in primate visual cortex using surgically implanted electrodes. The amplitude of the gamma oscillations increases linearly with stimulus contrast in strong correlation with the gamma oscillations found in the local field potential (LFP) of the macaque. We demonstrate that non-invasive magnetic field measurements of gamma oscillations in human visual cortex concur with invasive measures of activation in primate visual cortex, suggesting both a direct representation of underlying neuronal activity and a concurrence between human and primate cortical activity. © 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.