997 resultados para Correlation times
Resumo:
Our previously developed stochastic trajectory analysis technique has been applied to the calculation of first-passage time statistics of bound processes. Explicit results are obtained for linearly bound processes driven by dichotomous fluctuations having exponential and rectangular temporal distributions.
Resumo:
The stochastic-trajectory-analysis technique is applied to the calculation of the mean¿first-passage-time statistics for processes driven by external shot noise. Explicit analytical expressions are obtained for free and bound processes.
Resumo:
A new method for the calculation of first-passage times for non-Markovian processes is presented. In addition to the general formalism, some familiar examples are worked out in detail.
Resumo:
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
Resumo:
The IPERB newsletter is published by the Public Employment Relations Board. The opinions expressed should not be considered official opinions of the Iowa PERB.
Resumo:
We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [K. Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of Lvy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.
Resumo:
Recent experiments on liquid water show collective dipole orientation fluctuations dramatically slower than expected (with relaxation time >tation, the self-dipole randomization time tr, which is an upper limit on ta; we find that tr5ta. Third, to check if there are correlated domains of dipoles in water which have large relaxation times compared to the individual dipoles, we calculate the randomization time tbox of the site-dipole field, the net dipole moment formed by a set of molecules belonging to a box of edge Lbox. We find that the site-dipole randomization time tbox2.5ta for Lbox3 , i.e., it is shorter than the same quantity calculated for the self-dipole. Finally, we find that the orientational correlation length is short even at low T.
Resumo:
The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.
Resumo:
We apply the theory of continuous time random walks (CTRWs) to study some aspects involving extreme events in financial time series. We focus our attention on the mean exit time (MET). We derive a general equation for this average and compare it with empirical results coming from high-frequency data of the U.S. dollar and Deutsche mark futures market. The empirical MET follows a quadratic law in the return length interval which is consistent with the CTRW formalism.
Resumo:
We consider mean first-passage times (MFPTs) for systems driven by non-Markov gamma and McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes. The exact results are compared with the MFPT for Markov dichotomous noise and with the results of Monte Carlo simulations.
Resumo:
We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.