960 resultados para Corporate image
Resumo:
The X-ray structure of Image and MNDO optimized geometries of related 7-norbornenone derivatives show a clear tilt of the carbonyl bridge away from the C=C double bond. The preferred reduction from the more hindered face of the diester reveals the electron/electrostatic origin of π - facial selectivity in these systems. X-ray structure and MNDO calculations reveal the dominance of electronic effects in determining the π-facial selectivity in 4a.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).
Resumo:
The efficacy of the multifractal spectrum as a tool for characterizing images has been studied. This spectrum has been computed for digitized images of the nucleus of human cervical cancer cells and it was observed that the entire spectrum is almost fully reproduced for a normal cell while only the right half (q<0) of the spectrum is reproduced for a cancerous cell. Cells in stages in between the two extremes show a shortening of the left half of the spectrum proportional to their condition. The extent of this shortening has been found to be sufficient to permit a classification between three classes of cells at varying distances from a basal cancerous layer-the superficial cells, the intermediate cells and the parabasal cells. This technique may be used for automatic screening of the population while also indicating the stage of malignancy
Resumo:
Computerized tomography is an imaging technique which produces cross sectional map of an object from its line integrals. Image reconstruction algorithms require collection of line integrals covering the whole measurement range. However, in many practical situations part of projection data is inaccurately measured or not measured at all. In such incomplete projection data situations, conventional image reconstruction algorithms like the convolution back projection algorithm (CBP) and the Fourier reconstruction algorithm, assuming the projection data to be complete, produce degraded images. In this paper, a multiresolution multiscale modeling using the wavelet transform coefficients of projections is proposed for projection completion. The missing coefficients are then predicted based on these models at each scale followed by inverse wavelet transform to obtain the estimated projection data.
Resumo:
A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.
Resumo:
Novel pyrroloisoquinolines 4 are obtained from 1-methyl-3,4-dihydroisoquinolines 1 by the action of POCl3 and DMF, along with the expected mono- and dialdehydes 2 and 3 respectively and also directly from N-acetyl-2-phenethylamines.
Resumo:
Irradiation of 4-aryl-4-alkylhex-5-en-2-ones (e.g. 1a) or 5-aryl-4-alkylhex-5-en-2-ones (e.g. 2a) adsorbed on montmorillonite K-10 in a commercial microwave oven furnishes the multialkylated naphthalenes (e.g. 3).
Resumo:
In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.
Resumo:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering. One very common application is for measuring the motion of an optical mouse.