981 resultados para Coprophilous fungus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rare monophialidic fungus, Taifanglania hechuanensis gen. & sp. nov., was isolated from soil oil the banks of Jialin River, Hechuan, Chongqing City during a survey of soil-borne filamentous fungi from different phytogeographical areas in China. It is described and illustrated in this paper. A further eight monophialidic species of Paecilomyces are transferred to the genus. Diagnosis features of the new genus are white, grey, straw yellow or brown to black colonies on Czapek agar. Conidiophores are always absent or simple. Phialides are solitary, consisting of a cylindrical or ellipsoidal swollen basal portion, tapering into a thin neck, directly arising on vegetative hyphae or prophialides, sometimes consisting of a whorl of 2 to 3 phialides oil simple conidiophores. Conidia arc one-celled, hyaline, smooth-walled, subglobose, ellipsoidal or fusiform, having or no the connective between conidia and being thermotolerant. The new species is characterized by pale yellow to grey-yellow colonies, solitary phialides with ail ellipsoidal or fusiform basal portion that arise directly from the vegetative hyphae, big conidia (3.1-)3.9-8.7 x ( 1.7-)2.1-4.7(-5.1) mu m with the connective, and thermotolerant growth. A molecular study based oil the nucleotidic sequences of the SSU rDNA and ITS regions support the status of T. hechuanensis as a new species and Taifanglania as a new genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of varying doses of fungicides, alone or in mixtures, on selection for triazole resistance were examined under field conditions. Two experiments were conducted using the triazole fungicide fluquinconazole with the strobilurin fungicide azoxystrobin as a mixture partner. Inoculated wheat plots with a known ratio of more sensitive to less sensitive isolates of the leaf blotch fungus Mycosphaerella graminicola were sprayed with fungicide and sampled once symptoms had appeared. Selection for fluquinconazole resistance increased in proportion to the dose, up to one-half of the full dose (the maximum tested) in both experiments. At the higher doses of fluquinconazole, the addition of azoxystrobin was associated with a decrease in selection (nonsignificant in the first experiment) for triazole resistance. Control by low doses of fluquinconazole was increased by mixture with azoxystrobin, but at higher doses mixture with azoxystrobin sometimes decreased control, so that reduced selection was obtained at the cost of some reduction in control. The effects on resistance are not necessarily general consequences of mixing fungicides, and suggest that the properties of any specific mixture may need to be demonstrated experimentally. Selection was inversely related to control in the unmixed treatments in both experiments, but the relationship was weaker in the mixtures with azoxystrobin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research into indirect phytopathogen–herbivore interactions (i.e., interactions mediated by the host plant) is carried out in two largely independent directions: ecological/mechanistic and molecular. We investigate the origin of these approaches and their strengths and weaknesses. Ecological studies have determined the effect of herbivores and phytopathogens on their host plants and are often correlative: the need for long-term manipulative experiments is pressing. Molecular/cellular studies have concentrated on the role of signaling pathways for systemic induced resistance, mainly involving salicylic acid and jasmonic acid, and more recently the cross-talk between these pathways. This cross-talk demonstrates how interactions between signaling mechanisms and phytohormones could mediate plant–herbivore–pathogen interactions. A bridge between these approaches may be provided by field studies using chemical induction of defense, or investigating whole-organism mechanisms of interactions among the three species. To determine the role of phytohormones in induced resistance in the field, researchers must combine ecological and molecular methods. We discuss how these methods can be integrated and present the concept of “kaleidoscopic defense.” Our recent molecular-level investigations of interactions between the herbivore Gastrophysa viridula and the rust fungus Uromyces rumicis on Rumex obtusifolius, which were well studied at the mechanistic and ecological levels, illustrate the difficulty in combining these different approaches. We suggest that the choice of the right study system (possibly wild relatives of model species) is important, and that molecular studies must consider the environmental conditions under which experiments are performed. The generalization of molecular predictions to ecologically realistic settings will be facilitated by “middle-ground studies” concentrating on the outcomes of the interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inter-simple sequence repeat (ISSR) analysis and aggressiveness assays were used to investigate genetic variability within a global collection of Fusarium culmorum isolates. A set of four ISSR primers were tested, of which three primers amplified a total of 37 bands out of which 30 (81%) were polymorphic. The intraspecific diversity was high, ranging from four to 28 different ISSR genotypes for F. culmorum depending on the primer. The combined analysis of ISSR data revealed 59 different genotypes clustered into seven distinct clades amongst 75 isolates of F. culmorum examined. All the isolates were assayed to test their aggressiveness on a winter wheat cv. 'Armada'. A significant quantitative variation for aggressiveness was found among the isolates. The ISSR and aggressiveness variation existed on a macro- as well as micro-geographical scale. The data suggested a long-range dispersal of F. culmorum and indicated that this fungus may have been introduced into Canada from Europe. In addition to the high level of intraspecific diversity observed in F. culmorum, the index of multilocus association calculated using ISSR data indicated that reproduction in F. culmorum cannot be exclusively clonal and recombination is likely to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeat induced point mutation (RIP), a mechanism causing hypermutation of repetitive DNA sequences in fungi, has been described as a ‘genome defense’ which functions to inactivate mobile elements and inhibit their deleterious effects on genome stability. Here we address the interactions between RIP and transposable elements in the Microbotryum violaceum species complex. Ten strains of M. violaceum, most of which belong to different species of the fungus, were all found to contain intragenomic populations of copia-like retrotransposons. Intragenomic DNA sequence variation among the copia-like elements was analyzed for evidence of RIP. Among species with RIP, there was no significant correlation between the frequency of RIP-induced mutations and inferred transposition rate based on diversity. Two strains of M. violaceum, from two different plant species but belonging to the same fungal lineage, contained copia-like elements with very low diversity, as would result from a high transposition rate, and these were also unique in showing no evidence of the hypermutation patterns indicative of the RIP genome defense. In this species, evidence of RIP was also absent from a Class II helitron-like transposable element. However, unexpectedly the absolute repetitive element load was lower than in other strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments are presented which show that Botrytis cinerea, the cause of gray mould disease, is often present in symptomless lettuce plants as a systemic, endophytic, infection which may arise from seed. The fungus was isolated on selective media from surface sterilized sections of roots, stem pieces and leaf discs from symptomless plants grown in a conventional glasshouse and in a spore-free air-flow provided by an isolation propagator. The presence of B. cinerea was confirmed by immuno-labelling the tissues with the Botrytis-specific monoclonal antibody BC-12.CA4. As plants grew, infection spread from the roots to stems and leaves. Surface sterilization of seeds reduced the number of infected symptomless plants. Artificial infection of seedlings with dry conidia increased the rate of infection in some experiments. Selected isolates were genetically finger-printed using microsatellite loci. This confirmed systemic spread of the inoculating isolates but showed that other isolates were also present and that single plants hosted multiple isolates. This shows that B. cinerea commonly grows in lettuce plants as an endophyte, as has already been shown for Primula. If true for other hosts, the endophytic phase may be as important a component of the species population as the aggressive necrotrophic phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions [7]. Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by 24% of open reading frame models. We compared the haustoria and sporulating hyphae proteomes and identified 71 proteins exclusively in haustoria, the feeding and effector-delivery organs of the pathogen. These proteins are ‘significantly smaller than the rest of the protein pool and predicted to be secreted. Most do not share any similarities with Swiss–Prot or Trembl entries nor possess any identifiable Pfam domains. We used a novel automated prediction pipeline to model the 3D structures of the proteins, identify putative ligand binding sites and predict regions of intrinsic disorder. This revealed that the protein set found exclusively in haustoria is significantly less disordered than the rest of the identified Blumeria proteins or random (and representative) protein sets generated from the yeast proteome. For most of the haustorial proteins with unknown functions no good templates could be found, from which to generate high quality models. Thus, these unknown proteins present potentially new protein folds that can be specific to the interaction of the pathogen with its host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae-fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scop. (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival and fecundity, while rust infection consistently enhanced individual aphids’ performance. These effects varied in linear relation to lesion or pustule density. However, whole-plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied five days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30% while infection by botrytis with or without rust led to a 38% decrease. The aphids’ responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross-talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores. Key words: Vicia faba, Botrytis cinerea, Uromyces viciae-fabae, tripartite interactions, induced resistance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.