942 resultados para Conformal invariance
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
We study the running of the QCD coupling with the momentum squared (Q 2) and the temperature scales in the high temperature limit (T > Tc), using a mass dependent renormalization scheme to build the Renormalization Group Equations. The approach used guaranty gauge invariance, through the use of the Hard Thermal Loop approximation, and independence of the vertex chosen to renormalize the coupling. In general, the dependence of the coupling with the temperature is not logarithmical, although in the region Q2 ∼ T2 the logarithm approximation is reasonable. Finally, as known from Debye screening, color charge is screened in the coupling. The number of flavors, however, is anti-screened.
Resumo:
We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson equation governing the dynamics of the gluon propagator. The equation in question is set up in the Feynman gauge of the background field method, thus capturing a number of desirable features. Most notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. Various subtle field-theoretic issues, such as renormalization group invariance and regularization of quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is presented.
Resumo:
This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.
Resumo:
Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
The scale invariance manifested by the weakly-bound Efimov states implies that all the Efimov spectrum can be merged in a single scaling function. By considering this scaling function, the ratio between two consecutive energy levels, E3 (N+1) and E3 (N), can be obtained from a two-body low-energy observable (usually the scattering length a), given in units of the three-body energy level N. The zero-ranged scaling function is improved by incorporating finite range corrections in first order of r0/a (r0 is the potential effective range). The critical condition for three-identical bosons in s-wave, when the excited E3 (N+1) state disappears in the 2 + 1 threshold, is given by √E2/E3 (N) ≈ 0.38+0.12(r0/a). © 2012 Springer-Verlag.
Resumo:
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Pós-graduação em Física - IFT