929 resultados para Complex quantitative traits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses exploratory research to identify the reported leadership challenges faced by leaders in the public sector in Australia and what specific leadership practices they engage in to deal with these challenges. Emerging is a sense that leadership in these complex work environments is not about controlling or mandating action but about engaging in conversation, building relationships and empowering staff to engage in innovative ways to solve complex problems. In addition leaders provide a strong sense of purpose and identity to guide behaviour and decisions to overcome being overwhelmed by the sheer volume of demands in a unpredictable and often unsupportive environment. Questions are raised as to the core competencies leaders need to develop to drive and underpin these leadership practices and the implications this has for the focus on future leadership development programmes. The possible direction of a future research programme will be put forward for further discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstructured text data, such as emails, blogs, contracts, academic publications, organizational documents, transcribed interviews, and even tweets, are important sources of data in Information Systems research. Various forms of qualitative analysis of the content of these data exist and have revealed important insights. Yet, to date, these analyses have been hampered by limitations of human coding of large data sets, and by bias due to human interpretation. In this paper, we compare and combine two quantitative analysis techniques to demonstrate the capabilities of computational analysis for content analysis of unstructured text. Specifically, we seek to demonstrate how two quantitative analytic methods, viz., Latent Semantic Analysis and data mining, can aid researchers in revealing core content topic areas in large (or small) data sets, and in visualizing how these concepts evolve, migrate, converge or diverge over time. We exemplify the complementary application of these techniques through an examination of a 25-year sample of abstracts from selected journals in Information Systems, Management, and Accounting disciplines. Through this work, we explore the capabilities of two computational techniques, and show how these techniques can be used to gather insights from a large corpus of unstructured text.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management (or perceived mismanagement) of large-scale, complex projects poses special problems and often results in spectacular failures, cost overruns, time blowouts and stakeholder dissatisfaction. While traditional project management responds with increasingly administrative constraints, we argue that leaders of such projects also need to display adaptive and enabling behaviours to foster adaptive processes, such as opportunity recognition, which requires an interaction of cognitive and affective processes of individual, project, and team leader attributes and behaviours. At the core of this model we propose is an interaction of cognitive flexibility, affect and emotional intelligence. The result of this interaction is enhanced leader opportunity recognition that, in turn, facilitates multilevel outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a conceptual model to explore the perceived complementary congruence between complex project leaders and the demands of the complex project environment to understand how leaders’ affective and behavioural performance at work might be impacted by this fit. We propose that complex project leaders high in emotional intelligence and cognitive flexibility should report a higher level of fit between themselves and the complex project environment. This abilities-demands measure of fit should then relate to affective and behavioural performance outcomes, such that leaders who perceive a higher level of fit should establish and maintain more effective, higher quality project stakeholder relationships than leaders who perceive a lower level of fit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With estimates that two billion of the world’s population will be 65 years or older by 2050, ensuring that older people ‘age well’ is an international priority. To date, however, there is significant disagreement and debate about how to define and measure ‘ageing well’, with no consensus on either terminology or measurement. Thus, this chapter describes the research rationale, methodology and findings of the Australian Active Ageing Study (Triple A Study), which surveyed 2620 older Australians to identify significant contributions to quality of life for older people: work, learning, social participation, spirituality, emotional wellbeing, health, and life events. Exploratory factor analyses identified eight distinct elements (grouped into four key concepts) which appear to define ‘active ageing’ and explained 55% of the variance: social and life participation (25%), emotional health (22%), physical health and functioning (4%) and security (4%). These findings highlight the importance of understanding and supporting the social and emotional dimensions of ageing, as issues of social relationships, life engagement and emotional health dominated the factor structure. Our intension is that this paper will prompt informed debate and discussion on defining and measuring active ageing, facilitating exploration and understanding of the complexity of issues that intertwine, converge and enhance the ageing experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As technology extends further into consumer daily lives, consumers develop significant relationships with their technology, particularly mobile devices. This conceptual paper aims to investigate the merging of consumers and their technology, termed the cyborg consumer, which has been previously overlooked in the marketing literature. More specifically, this investigation extends the marketing theories of consumer psychological motivation and ersonality traits in examining the influence of these elements on cyborg consumer behaviour, such as intensive consumption of technology and construction of an important part of the self on the Internet. A conceptual framework of the cyborg consumer is presented, which will help marketers to better understand how consumers’ relationships with technology are changing and how marketing practices can be better targeted to the cyborg consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.