908 resultados para Colloidal particles
Resumo:
We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space.
Resumo:
An indirect fluorescent test was developed for detecting antibodies to Paracoccidioides brasiliensis using bentonite particles as antigen (Bent-IF). The bentonite particles were coated with P. brasiliensis polysaccharide antigen and tested with sera from paracoccidioidomycosis patients (36 sera), normal blood donors (32 sera) and patients with non-mycotic diseases (29 sera). The titres given by the positive sera were compared with those of complement fixation (CF), immunodiffusion (ID) and immunofluorescent test using yeast forms of the fungus as antigen (conventional-IF). All normal blood donors' sera gave a negative Bent-IF, conventional-IF, ID and CF tests. All paracoccidioidomycosis sera were reactive in conventional-IF and gave concordant results in Bent-IF. There was no correlation between CF and Bent-IF titres. 27·6% of sera from patients with non-mycotic diseases gave weak titres in both IF-tests. The present data indicate that the Bent-IF is a sensitive and simple serodiagnostic technique comparable with the conventional P. brasiliensis antibody test. © 1983.
Resumo:
Bentonite particles coated with polysaccharide antigen or crude soluble antigen of Paracoccidioides brasiliensis were injected intradermally or intravenously in mice. In control animals that were not pre-immunized with P. brasiliensis antigens, coated and uncoated bentonite caused minimal and nonspecific inflammation around the cutaneous injection site or around the bentonite thrombi in small lung vessels after intravenous injection. However, in mice previously immunized with P. brasiliensis antigens, the coated bentonite particles boosted the humoral and cellular immune responses to P. brasiliensis and evoked intense inflammatory reactions. Twelve days after intradermal injection, the inflammatory reaction around the bentonite was rich in neutrophils, macrophages, lymphocytes and plasma cells associated with young granulation tissue. In intravenously injected mice, the pulmonary inflammation was maximal at day 2, and was characterized by a florid neutrophilic and macrophagic cellular infiltration around bentonite thrombi; in some foci, there was incipient organization to mature granuloma. However, in both models, there was no formation of epithelioid granulomata, demonstrating that in paracoccidioidomycosis cellular immunity alone, without the presence of intact micro-organisms, may not be enough for the development of this type of granuloma.
Resumo:
Electrolytes may modify the physical-chemical characteristics of colloidal particle interfaces in suspension, which can favour gel or aggregate formation. The influence of NH4Cl loading on the aggregation and gelation of SnO2 colloidal suspensions was investigated using measurements of rheology, turbidity and infrared spectra. A rapid aggregate growth for samples with Cl- > 20 mM was observed. With increasing age, gelation was observed due to formation of interaggregate bonds. For concentration of Cl- between 20 and 9 mM, the aggregation process was slower allowing the formation of gel with a network which was not destroyed as the gel was submitted to a small rate of shear. As aging continues, the condensation reaction between OH groups gave rise to the formation of Sn-O bonds, irrespective of the electrolyte loading. © 1992 Elsevier Science Publishers B.V. All rights reserved.
Resumo:
We show that the emission of a Minkowski particle by a general class of scalar sources as described by inertial observers corresponds to either the emission or the absorption of a Rindler particle as described by uniformly accelerated observers. Our results are discussed in connection with the current controversy whether uniformly accelerated detectors radiate.
Resumo:
The preparation of spherical Y2O2S and Y2O2S:Eu particles using a solid-gas reaction of monodispersed precursors with elemental sulfur vapor under an argon atmosphere has been investigated. The precursors, undoped and doped yttrium basic carbonates, are synthesized by aging a stock solution containing the respective cation chloride and urea at 82-84 °C. Y2O2S and Y2O2S:Eu were characterized in terms of their composition, crystallinity and morphology by chemical analysis, X-ray powder diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The Eu-doped oxysulfide was also characterized by atomic absorption spectrophotometry and luminescence spectroscopy. The spherical morphology of oxysulfide products and of basic carbonate precursors suggests a topotatic inter-relationship between both compounds.
Resumo:
Starting from aqueous colloidal suspensions, undoped and Nb5+ doped SnO2 thin films have been prepared by using the dip-coating sol gel process. X-ray diffraction results show that films are polycrystalline with crystallites of average size1-4nm. Decreasing the thickness of the films and increasing the Nb5+ concentration limits the crystallite size growth during firing. Complex impedance measurements reveal capacitive and resistive effects between adjacent crystallites or grains, characteristic of electrical potential barriers. The transfer of charge throughout these barriers determines the macroscopic electrical resistance of the layer. The analysis of the optical absorption spectra shows that the samples present more than 80% of their transmittance in the visible region and the value of the band gap energy increases with decreasing crystallite size. © 1997 Chapman & Hall.
Resumo:
SnO2 supported membranes have been prepared by sol-casting on alumina tubular substrate, using aqueous colloidal suspensions prepared by sol-gel route. The viscoelastic behaviour during sol ageing was analyzed by dinamic rheologial measurements. The complex viscosity and the storage and loss moduli have been followed during the sol-gel transition and the results have been correlated with the linear aggregates growth and the scalar percolation models. The scanning electron microscopy has evidenced that the homogeneity and thickness of the membrane depend on the sol ageing time. Crack-free and homogeneous membranes have been obtained for coated layers of 0.5μm thickness. © 1997 Trans Tech Publications.
Resumo:
Low-energy muon-transfer cross sections and rates in collisions of muonic atoms with hydrogen isotopes are calculated using a six-state close-coupling approximation to coordinate-space Faddeev-Hahn-type equations. In the muonic case satisfactory results are obtained for all hydrogen isotopes and the experimentaly observed strong isotopic dependence of transfer rates is also reproduced. A comparison with results of other theoretical and available experimental works is presented. The present model also leads to good transfer cross sections in the well-understood problem of antihydrogen formation in antiproton-positronium collision.
Resumo:
In some supergravity models there are light weakly coupled scalar (S)-and pseudoscalar (P) particles. These particles arise following a superlight gravitino. In these models the decay SIP → γγ exists. We examine constraints on this process considering these photons as responsible by the extragalactic background light. We also consider the amount of SIP particles produced through the fusion of the cosmic background photons and contributing to the effective number of light neutrino species during primordial nucleosynthesis. We obtain bounds on the gravitino mass complementary to the existing ones.
Evolution of the viscoelastic properties of SnO2 colloidal suspensions during the sol-gel transition
Resumo:
This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.
Resumo:
PbMg1/3Nb2/3O3 (PMN) powder was prepared by citrate organic solution, and barium titanate (BT) seed particles were added to encourage the perovskite phase formation. Sintering was followed using the constant heating rate mode of a dilatometer, and it was observed that the seed concentration affected the PMN shrinkage rate and crystal structure. The study of the lattice parameters of the samples after the sintering process indicates that the diffusion of the titanium and of the barium inside perovskite and pyrochlore PMN phases occurs. Moreover, this substitution provoked a decrease of the lattice parameters as showed by the Rietveld refinement.