1000 resultados para Cohesive solid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of focus spot and target thickness on multi-keV x-ray sources generated by 2 ns duration laser heated solid targets are investigated on the Shenguang II laser facility. In the case of thick-foil targets, the experimental data and theoretical analysis show that the emission volume of the x-ray sources is sensitive to the laser focus spot and proportional to the 3 power of the focus spot size. The steady x-ray flux is proportional to the 5/3 power of the focus spot size of the given laser beam in our experimental condition. In the case of thin-foil targets, experimental data show that there is an optimal foil thickness corresponding to the given laser parameters. With the given laser beam, the optimal thin-foil thickness is proportional to the -2/3 power of the focus spot size, and the optimal x-ray energy of thin foil is independent of focus spot size. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the carrier-envelope phase (CEP) of the driving laser pulse on the generation of single attosecond (as) pulses from surface harmonics by using the polarization gating technique is investigated in detail. It is found that the modulation depth of the high-order harmonic spectrum depends on the CEP, and a strong single 68 as pulse can be generated when the CEP is stable and has the proper value. The physical origin of the influence of the CEP is explained in terms of the oscillating mirror model. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2997342]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the structure and evolution of the deep Earth is strongly linked to knowledge of the thermodynamic properties of rocky materials at extreme temperatures and pressures. In this thesis, I present work that helps constrain the equation of state properties of iron-bearing Mg-silicate perovskite as well as oxide-silicate melts. I use a mixture of experimental, statistical, and theoretical techniques to obtain knowledge about these phases. These include laser-heated diamond anvil cell experiments, Bayesian statistical analysis of powder diffraction data, and the development of a new simplified model for understanding oxide and silicate melts at mantle conditions. By shedding light on the thermodynamic properties of such ubiquitous Earth-forming materials, I hope to aid our community’s progress toward understanding the large-scale processes operating in the Earth’s mantle, both in the modern day and early in Earth’s history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a circularly polarized laser pulse with a mixed solid target containing two species of ions is studied by particle in cell simulations and analytical model. After the interaction tends to be stable, it is demonstrated that the acceleration is more efficient for the heavier ions than that in plasmas containing a single kind of heavy ion and the acceleration efficiency is higher when its proportion is lower. To obtain monoenergetic heavy-ion beams, a sandwich target with a thin mixed ion layer between two light ion layers and a microstructured target are proposed. The influences of parameters of the laser pulse and target on ion acceleration are discussed in detail. It is found that, when the target is thick enough, a cold target is more appropriate for heavy-ion acceleration than a warm target, and the velocity of the reflected heavy ions is proportional to the laser amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a petawatt laser with a small solid-density plasma bunch is studied by particle-in-cell simulation. It is shown that when irradiated by a laser of intensity >10(21) W/cm(2), a dense plasma bunch of micrometer size can be efficiently accelerated. The kinetic energy of the ions in the high-density region of the plasma bunch can exceed ten MeV at a density in the 10(23)-cm(-3) level. Having a flux density orders of magnitude higher than that of the traditional charged-particle pulses, the laser-accelerated plasma bunch can have a wide range of applications. In particular, such a dense energetic plasma bunch impinging on the compressed fuel in inertial fusion can significantly enhance the nuclear-reaction cross section and is thus a promising alternative for fast ignition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The spectrum of dissolved mercury atoms in simple liquids has been shown to be capable of revealing information concerning local structures in these liquids.

Part II

Infrared intensity perturbations in simple solutions have been shown to involve more detailed interaction than just dielectric polarization. No correlation has been found between frequency shifts and intensity enhancements.

Part III

Evidence for perturbed rotation of HCl in rare gas matrices has been found. The magnitude of the barrier to rotation is concluded to be of order of 30 cm^(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To make stable and reproducible contacts to GaAs, metals which react with GaAs in the solid-phase should be favored. In this study, contacts formed employing Pd/TiN/Pd/Ag, Pd:Mg/TiN/Pd:Mg/Ag and Ru/TiN/Ru/Ag are studied. The TiN layer is included to investigate its application as diffusion barrier in these metallizations. Contacts to n-GaAs are rectifying and the value of barrier height is modified upon annealing. Contacts to p-GaAs are initially rectifying but exhibit ohmic behaviour after annealing. The modifications in the electrical properties are attributed to the solid-phase reaction of metal and GaAs. The integrity of the contacts relies critically on the success of TiN to prevent the intermixing of Ag overlayer and the underlying layers. At elevated annealing temperatures (450°C), TiN fails to function as a diffusion barrier. As a result, the properties of the contact deteriorates.

Relevância:

20.00% 20.00%

Publicador: