952 resultados para Claim Amount
Resumo:
Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.
Resumo:
To analyse mechanotransduction resulting from tensile loading under defined conditions, various devices for in vitro cell stimulation have been developed. This work aimed to determine the strain distribution on the membrane of a commercially available device and its consistency with rising cycle numbers, as well as the amount of strain transferred to adherent cells. The strains and their behaviour within the stimulation device were determined using digital image correlation (DIC). The strain transferred to cells was measured on eGFP-transfected bone marrow-derived cells imaged with a fluorescence microscope. The analysis was performed by determining the coordinates of prominent positions on the cells, calculating vectors between the coordinates and their length changes with increasing applied tensile strain. The stimulation device was found to apply homogeneous (mean of standard deviations approx. 2% of mean strain) and reproducible strains in the central well area. However, on average, only half of the applied strain was transferred to the bone marrow-derived cells. Furthermore, the strain measured within the device increased significantly with an increasing number of cycles while the membrane's Young's modulus decreased, indicating permanent changes in the material during extended use. Thus, strain magnitudes do not match the system readout and results require careful interpretation, especially at high cycle numbers.
Resumo:
BACKGROUND: Grafting of autologous hyaline cartilage and bone for articular cartilage repair is a well-accepted technique. Although encouraging midterm clinical results have been reported, no information on the mechanical competence of the transplanted joint surface is available. HYPOTHESIS: The mechanical competence of osteochondral autografts is maintained after transplantation. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were filled with autografts (7.45 mm in diameter) in one femoral condyle in 12 mature sheep. The ipsilateral femoral condyle served as the donor site, and the resulting defect (8.3 mm in diameter) was left empty. The repair response was examined after 3 and 6 months with mechanical and histologic assessment and histomorphometric techniques. RESULTS: Good surface congruity and plug placement was achieved. The Young modulus of the grafted cartilage significantly dropped to 57.5% of healthy tissue after 3 months (P < .05) but then recovered to 82.2% after 6 months. The aggregate and dynamic moduli behaved similarly. The graft edges showed fibrillation and, in some cases (4 of 6), hypercellularity and chondrocyte clustering. Subchondral bone sclerosis was observed in 8 of 12 cases, and the amount of mineralized bone in the graft area increased from 40% to 61%. CONCLUSIONS: The mechanical quality of transplanted cartilage varies considerably over a short period of time, potentially reflecting both degenerative and regenerative processes, while histologically signs of both cartilage and bone degeneration occur. CLINICAL RELEVANCE: Both the mechanically degenerative and restorative processes illustrate the complex progression of regeneration after osteochondral transplantation. The histologic evidence raises doubts as to the long-term durability of the osteochondral repair.
Resumo:
Bone development is influenced by the local mechanical environment. Experimental evidence suggests that altered loading can change cell proliferation and differentiation in chondro- and osteogenesis during endochondral ossification. This study investigated the effects of three-point bending of murine fetal metatarsal bone anlagen in vitro on cartilage differentiation, matrix mineralization and bone collar formation. This is of special interest because endochondral ossification is also an important process in bone healing and regeneration. Metatarsal preparations of 15 mouse fetuses stage 17.5 dpc were dissected en bloc and cultured for 7 days. After 3 days in culture to allow adherence they were stimulated 4 days for 20 min twice daily by a controlled bending of approximately 1000-1500 microstrain at 1 Hz. The paraffin-embedded bone sections were analyzed using histological and histomorphometrical techniques. The stimulated group showed an elongated periosteal bone collar while the total bone length was not different from controls. The region of interest (ROI), comprising the two hypertrophic zones and the intermediate calcifying diaphyseal zone, was greater in the stimulated group. The mineralized fraction of the ROI was smaller in the stimulated group, while the absolute amount of mineralized area was not different. These results demonstrate that a new device developed to apply three-point bending to a mouse metatarsal bone culture model caused an elongation of the periosteal bone collar, but did not lead to a modification in cartilage differentiation and matrix mineralization. The results corroborate the influence of biophysical stimulation during endochondral bone development in vitro. Further experiments with an altered loading regime may lead to more pronounced effects on the process of endochondral ossification and may provide further insights into the underlying mechanisms of mechanoregulation which also play a role in bone regeneration.
Resumo:
While bullying at school has long been recognised as existing in Australian literature the empirical study of the phenomenon really did not begin until 1989-90. In 1994 an Australian Commonwealth Senate inquiry into school violence resulted in the publication of an influential report ‘Sticks and Stones: A report on violence in Schools’. This inquiry heralded a nationwide movement to address the issue of school violence,particularly bullying. While the report generally concluded that school violence was not an issue in Australian schools, bullying was. The inquiry raised significant questions regarding the frequency of violence in Australian culture, the impact of violence on the community, and identified the need for intervention programs to reduce violence, particularly that associated with bullying. Overall, in 2003 between one in five and one in seven students reported being bullied face-to-face once a week or more. In Australia victimization is more frequently reported by younger students and girls generally report less victimization than boys. In secondary school the amount of bullying was highest in Years 8 and 9 (Slee,2003)
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
Genetic variation is the resource animal breeders exploit in stock improvement programs. Both the process of selection and husbandry practices employed in aquaculture will erode genetic variation levels overtime, hence the critical resource can be lost and this may compromise future genetic gains in breeding programs. The amount of genetic variation in five lines of Sydney Rock Oyster (SRO) that had been selected for QX (Queensland unknown) disease resistance were examined and compared with that in a wild reference population using seven specific SRO microsatellite loci. The five selected lines had significantly lower levels of genetic diversity than did the wild reference population with allelic diversity declining approximately 80%, but impacts on heterozygosity per locus were less severe. Significant deficiencies in heterozygotes were detected at six of the seven loci in both mass selected lines and the wild reference population. Against this trend however, a significant excess of heterozygotes was recorded at three loci Sgo9, Sgo14 and Sgo21 in three QX disease resistant lines (#2, #5 and #13). All populations were significantly genetic differentiated from each other based on pairwise FST values. A neighbour joining tree based on DA genetic distances showed a clear separation between all culture and wild populations. Results of this study show clearly, that the impacts of the stock improvement program for SRO has significantly eroded natural levels of genetic variation in the culture lines. This could compromise long-term genetic gains and affect sustainability of the SRO breeding program over the long-term.
Resumo:
Background: If chondrocytes from the superficial, middle, and deep zones of articular cartilage could maintain or regain their characteristic properties during in vitro culture, it would be feasible to create constructs comprising these distinctive zones. ----- ----- Hypothesis: Zone-specific characteristics of zonal cell populations will disappear during 2-dimensional expansion but will reappear after 3-dimensional redifferentiation, independent of the culture technique used (alginate beads versus pellet culture).----- ----- Study Design: Controlled laboratory study.----- ----- Methods: Equine articular chondrocytes from the 3 zones were expanded in monolayer culture (8 donors) and subsequently redifferentiated in pellet and alginate bead cultures for up to 4 weeks. Glycosaminoglycans and DNA were quantified, along with immunohistochemical assessment of the expression of various zonal markers, including cartilage oligomeric protein (marking cells from the deeper zones) and clusterin (specifically expressed by superficial chondrocytes).----- ----- Results: Cell yield varied between zones, but proliferation rates did not show significant differences. Expression of all evaluated zonal markers was lost during expansion. Compared to the alginate bead cultures, pellet cultures showed a higher amount of glycosaminoglycans produced per DNA after redifferentiation. In contrast to cells in pellet cultures, cells in alginate beads regained zonal differences, as evidenced by zone-specific reappearance of cartilage oligomeric protein and clusterin, as well as significantly higher glycosaminoglycans production by cells from the deep zone compared to the superficial zone.----- ----- Conclusion: Chondrocytes isolated from the 3 zones of equine cartilage can restore their zone-specific matrix expression when cultured in alginate after in vitro expansion.
Resumo:
Creative Industries was adopted as a platform in the 90s by the Blair government in the UK to describe the convergence of the arts, media, communication and information technologies as a newly formed cluster, providing economic and cultural capital for the knowledge economy. The philosophy and rhetoric which has grown around this concept (Leadbeater 2000, Castells 2000, Florida 2000, Caves 2000, Hartley 2000) has been influential in re-contextualising culture and the arts in the 21st century. Where governments and educational institutions have embraced the context of the creative industries, it is having a profound effect on the way arts are being positioned, originally as ‘creative content’ for the new economy. Countries and regions which have actively targeted the Creative Industries as an important economic growth factor in a post-industrial environment are numerous, but it is interesting to note that North and South East Asia and Australia have been at the forefront of developing the Creative Industries in its various guises. It could be argued that the initial phase of Creative Industries concentrated on media and communication technologies to provide commercial outcomes in small incubator business models; developing, for example, products for the games industry. Creative Industries is now entering a second phase of development; one in which the broader palette of the arts, though still not at the forefront of debate, is being re-examined. Both phases of Creative Industries have emphasised creativity and innovation as key drivers in the success and effectiveness of this sector, and although the arts by no means has a monopoly on these drivers, it is where they have an important part to play in the creative industries context. Arguably, the second wave of the creative industries acknowledges to a greater extent that commercialisation works in tandem with government and other support in a complex mixed economic model. In relation to the performing arts, the global market has seen an increase in large-scale cultural events such as festivals which are providing employment for the arts industry and multiplier effects in other parts of the economy. Differentiated product is important in this competitive arena and the use of mediated and digitised environments has been able to increase the amount of arts product available to an international market. This changed environment requires the development of new skills for our artists and producers and has given rise to a reappraisal of approaches to arts training and research in the Higher Degree Education sector (Brown 2007, Cunningham 2006). This paper examines pedagogical changes which took place in the first Creative Industries Faculty in the world at Queensland University of Technology as well as the increased opportunities for leading research initiatives. It concludes with the example of an interdisciplinary artwork produced in a creative industries precinct, exemplifying the convergence of arts and communication technologies and that of artistic practice and research.
Resumo:
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.
Resumo:
In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.
Resumo:
In recent years, there has been an enormous amount of research and development in the area of heterogeneous photocatalytic water purification process due to its effectiveness in degrading and mineralising the recalcitrant organic compounds as well as the possibility of utilising the solar UV and visible spectrum. One hundred and twenty recently published papers are reviewed and summarised here with the focus being on the photocatalytic oxidation of phenols and their derivatives, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and substituted phenols are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidising agents/electron acceptors, mode of catalyst application, and calcination temperatures can play an important role on the photocatalytic degradation of phenolic compounds in wastewater. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various phenols and substituted phenols are also reviewed.
Resumo:
Retirement village assets are different from traditional residential assets due to their operation in accordance with statutory legislation. Designed for independent living, retirement villages provide either detached or semi-detached residential dwellings with car parking and small private yards with community facilities providing a shared congregational area for village activities and socialising. In essence, the village operator provides the land and buildings to the residents who pay an amount on entry for the right of occupation. On departure from the units an agreed proportion of either the original purchase price or the sale price is paid to the outgoing resident. As ongoing levies are typically offset by ongoing operational expenses the market value of the operator's interest in the retirement village is therefore predominantly based upon the estimated future income from deferred management fees and capital gain upon roll-over receivable by the operator in accordance with the respective residency agreements. Given the lumpiness of these payments, there is general acceptance that the most appropriate approach to valuation is through discounted cash flow (DCF) analysis. There is however inconsistency between valuers across Australia in how they undertake their DCF analysis, leading to differences in reported values and subsequent confusion among users of valuation services. To give guidance to valuers and enhance confidence from users of valuation services this paper investigates the five major elements of DCF methodology, namely cash flows, escalation factors, holding period, terminal value and discount rate.
Resumo:
This thesis conceptualises Use for IS (Information Systems) success. While Use in this study describes the extent to which an IS is incorporated into the user’s processes or tasks, success of an IS is the measure of the degree to which the person using the system is better off. For IS success, the conceptualisation of Use offers new perspectives on describing and measuring Use. We test the philosophies of the conceptualisation using empirical evidence in an Enterprise Systems (ES) context. Results from the empirical analysis contribute insights to the existing body of knowledge on the role of Use and demonstrate Use as an important factor and measure of IS success. System Use is a central theme in IS research. For instance, Use is regarded as an important dimension of IS success. Despite its recognition, the Use dimension of IS success reportedly suffers from an all too simplistic definition, misconception, poor specification of its complex nature, and an inadequacy of measurement approaches (Bokhari 2005; DeLone and McLean 2003; Zigurs 1993). Given the above, Burton-Jones and Straub (2006) urge scholars to revisit the concept of system Use, consider a stronger theoretical treatment, and submit the construct to further validation in its intended nomological net. On those considerations, this study re-conceptualises Use for IS success. The new conceptualisation adopts a work-process system-centric lens and draws upon the characteristics of modern system types, key user groups and their information needs, and the incorporation of IS in work processes. With these characteristics, the definition of Use and how it may be measured is systematically established. Use is conceptualised as a second-order measurement construct determined by three sub-dimensions: attitude of its users, depth, and amount of Use. The construct is positioned in a modified IS success research model, in an attempt to demonstrate its central role in determining IS success in an ES setting. A two-stage mixed-methods research design—incorporating a sequential explanatory strategy—was adopted to collect empirical data and to test the research model. The first empirical investigation involved an experiment and a survey of ES end users at a leading tertiary education institute in Australia. The second, a qualitative investigation, involved a series of interviews with real-world operational managers in large Indian private-sector companies to canvass their day-to-day experiences with ES. The research strategy adopted has a stronger quantitative leaning. The survey analysis results demonstrate the aptness of Use as an antecedent and a consequence of IS success, and furthermore, as a mediator between the quality of IS and the impacts of IS on individuals. Qualitative data analysis on the other hand, is used to derive a framework for classifying the diversity of ES Use behaviour. The qualitative results establish that workers Use IS in their context to orientate, negotiate, or innovate. The implications are twofold. For research, this study contributes to cumulative IS success knowledge an approach for defining, contextualising, measuring, and validating Use. For practice, research findings not only provide insights for educators when incorporating ES for higher education, but also demonstrate how operational managers incorporate ES into their work practices. Research findings leave the way open for future, larger-scale research into how industry practitioners interact with an ES to complete their work in varied organisational environments.