911 resultados para Cixi, Empress dowager of China, 1835-1908.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [30721140307, 30590380]; Chinese Academy of Sciences (CAS) [KZCX2-YW-432]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Key Research and Development Program [2010CB833500]; Natural Science Foundation of China [30590381]; Knowledge Innovation Project of Chinese Academy of Sciences [KZCX2-YW-432]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asia 3 Foresight Program [30721140307]; National Key Research and Development Program [2010CB833500]; National Natural Science Foundation of China [30590381, 30900198];

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [30590381]; Knowledge Innovation Program of the Chinese Academy of Sciences [KZCX2YW-432]; International Partnership Project

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [30590381, 30670384]; Knowledge Innovation Project of the Chinese Academy of Sciences [KZCX2-YW-432]; National Key Research and Development Program [2002CB412501]; 'Hundred Talents' Program of the Chinese Acade

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ministry of Science and Technology of China [2008BAK47B02, 2008BAC44B04, 2008BAK50B06, 2008BAC43B01, 2006BAC08B06]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese Academy of Sciences [KZCX2-YW-315, KZCX2-YW-Q1-01]; National Natural Science Foundation of China [40625002, 90502009, 200905006]; Office of Science (BER), U. S. Department of Energy ; EU/FP7 [212250]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [40471134]; program of Lights of the West China by the Chinese Academy of Science

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

China's cultivated land has been undergoing dramatic changes along with its rapidly growing economy and population. The impacts of land use transformation on food production at the national scale, however, have been poorly understood due to the lack of detailed spatially explicit agricultural productivity information on cropland change and crop productivity. This study evaluates the effect of the cropland transformation on agricultural productivity by combining the land use data of China for the period of 1990-2000 from TM images and a satellite-based NPP (net primary production) model driven with NOAH/AVHRR data. The cropland area of China has a net increase of 2.79 Mha in the study period, which causes a slightly increased agricultural productivity (6.96 Mt C) at the national level. Although the newly cultivated lands compensated for the loss from urban expansion, but the contribution to production is insignificant because of the low productivity. The decrease in crop production resulting from urban expansion is about twice of that from abandonment of arable lands to forests and grasslands. The productivity of arable lands occupied by urban expansion was 80% higher than that of the newly cultivated lands in the regions with unfavorable natural conditions. Significance of cropland transformation impacts is spatially diverse with the differences in land use change intensity and land productivity across China. The increase in arable land area and yet decline in land quality may reduce the production potential and sustainability of China's agro-ecosystems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [70673097]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July-September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007-June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m(-2) year(-1)). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July-September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil net nitrogen mineralization (NNM) of four grasslands across the elevation and precipitation gradients was studied in situ in the upper 0-10 cm soil layer using the resin-core technique in Xilin River basin, Inner Mongolia, China during the growing season of 2006. The primary objectives were to examine variations of NNM among grassland types and the main influencing factors. These grasslands included Stipa baicalensis (SB), Aneulolepidum Chinense (AC), Stipa grandis (SG), and Stipa krylovii (SK) grassland. The results showed that the seasonal variation patterns of NNM were similar among the four grasslands, the rates of NNM and nitrification were highest from June to August, and lowest in September and October during the growing season. The rates of NNM and nitrification were affected significantly by the incubation time, and they were positively correlated with soil organic carbon content, total soil nitrogen (TN) content, soil temperature, and soil water content, but the rates of NNM and nitrification were negatively correlated with available N, and weakly correlated with soil pH and C:N ratio. The sequences of the daily mean rates of NNM and nitrification in the four grasslands during the growing season were AC > SG > SB > SK, and TN content maybe the main affecting factors which can be attributed to the land use type.