975 resultados para Chromosomal Mosaicism
Resumo:
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.
Resumo:
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.
Resumo:
A role for the minichromosome maintenance (MCM) proteins in cancer initiation and progression is slowly emerging. Functioning as a complex to ensure a single chromosomal replication per cell cycle, the six family members have been implicated in several neoplastic disease states, including breast cancer. Our study aim to investigate the prognostic significance of these proteins in breast cancer. We studied the expression of MCMs in various datasets and the associations of the expression with clinicopathological parameters. When considered alone, high level MCM4 overexpression was only weakly associated with shorter survival in the combined breast cancer patient cohort (n = 1441, Hazard Ratio = 1.31; 95% Confidence Interval = 1.11-1.55; p = 0.001). On the other hand, when we studied all six components of the MCM complex, we found that overexpression of all MCMs was strongly associated with shorter survival in the same cohort (n = 1441, Hazard Ratio = 1.75; 95% Confidence Interval = 1.31-2.34; p <0.001), suggesting these MCM proteins may cooperate to promote breast cancer progression. Indeed, their expressions were significantly correlated with each other in these cohorts. In addition, we found that increasing number of overexpressed MCMs was associated with negative ER status as well as treatment response. Together, our findings are reproducible in seven independent breast cancer cohorts, with 1441 patients, and suggest that MCM profiling could potentially be used to predict response to treatment and prognosis in breast cancer patients.
Resumo:
Galactosemia, an inborn error of galactose metabolism, was first described in the 1900s by von Ruess. The subsequent 100years has seen considerable progress in understanding the underlying genetics and biochemistry of this condition. Initial studies concentrated on increasing the understanding of the clinical manifestations of the disease. However, Leloir's discovery of the pathway of galactose catabolism in the 1940s and 1950s enabled other scientists, notably Kalckar, to link the disease to a specific enzymatic step in the pathway. Kalckar's work established that defects in galactose 1-phosphate uridylyltransferase (GALT) were responsible for the majority of cases of galactosemia. However, over the next three decades it became clear that there were two other forms of galactosemia: type II resulting from deficiencies in galactokinase (GALK1) and type III where the affected enzyme is UDP-galactose 4'-epimerase (GALE). From the 1970s, molecular biology approaches were applied to galactosemia. The chromosomal locations and DNA sequences of the three genes were determined. These studies enabled modern biochemical studies. Structures of the proteins have been determined and biochemical studies have shown that enzymatic impairment often results from misfolding and consequent protein instability. Cellular and model organism studies have demonstrated that reduced GALT or GALE activity results in increased oxidative stress. Thus, after a century of progress, it is possible to conceive of improved therapies including drugs to manipulate the pathway to reduce potentially toxic intermediates, antioxidants to reduce the oxidative stress of cells or use of "pharmacological chaperones" to stabilise the affected proteins.
Resumo:
Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.
Resumo:
Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.
Resumo:
An 8-year-old girl with some features of Turner syndrome and karyotype 45X/46XY had developed a bilateral gonadoblastoma in her rudimentary ovaries. Her normal Y chromosome showed the characteristic distal fluorescence, as seen in her father's. Another mosaic, this time 45X/46XidicY, and also with some Turner features had rudimentary ovaries, but no gonadoblastoma had developed at age 14. The nature of her idicY, which showed no fluorescent distal Yq and had one of the centromeres inactivated, was confirmed by in situ hybridisation with a Yp-specific probe. Using primers from a human Yp-specific sequence, we amplified DNA extracted from paraffin-embedded ovarian tissue from both cases, and from a normal testicle and a normal ovary as controls. The finding of the expected Y-derived PCR product in the rudimentary gonads from these mosaic patients indicates the presence of their Y chromosome in both. We discuss the validity of the findings, and the possible role of sequences in or near the fluorescent part of Yq in the origin of gonadoblastoma in Y-bearing mosaic Turner syndrome.
Resumo:
The influence of mixed hematopoietic chimerism (MC) after allogeneic bone marrow transplantation remains unknown. Increasingly sensitive detection methods have shown that MC occurs frequently. We report a highly sensitive novel method to assess MC based on the polymerase chain reaction (PCR). Simple dinucleotide repeat sequences called microsatellites have been found to vary in their repeat number between individuals. We use this variation to type donor-recipient pairs following allogeneic BMT. A panel of seven microsatellites was used to distinguish between donor and recipient cells of 32 transplants. Informative microsatellites were subsequently used to assess MC after BMT in this group of patients. Seventeen of the 32 transplants involved a donor of opposite sex; hence, cytogenetics and Y chromosome-specific PCR were also used as an index of chimerism in these patients. MC was detected in bone marrow aspirates and peripheral blood in 18 of 32 patients (56%) by PCR. In several cases, only stored slide material was available for analysis but PCR of microsatellites or Y chromosomal material could be used successfully to assess the origin of cells in this archival material. Cytogenetic analysis was possible in 17 patients and MC was detected in three patients. Twelve patients received T-cell-depleted marrow and showed a high incidence of MC as revealed by PCR (greater than 80%). Twenty patients received unmanipulated marrow, and while the incidence of MC was lower (44%), this was a high percentage when compared with other studies. Once MC was detected, the percentages of recipient cells tended to increase. However, in patients exhibiting MC who subsequently relapsed, this increase was relatively sudden. The overall level of recipient cells in the group of MC patients who subsequently relapsed was higher than in those who exhibited stable MC. Thus, while the occurrence of MC was not indicative of a poor prognosis per se, sudden increases in the proportions of recipient cells may be a prelude to graft rejection or relapse.
Resumo:
We report a case of acute lymphoblastic leukaemia relapsing after allogeneic bone marrow transplantation in which the polymerase chain reaction (PCR) was used to assess chimeric status. This technique demonstrated the progressive reappearance of host cells prior to clinical relapse. The relapse was of host cell origin as shown by the presence of female (recipient) metaphases containing an abnormal chromosomal marker (iso 9q) which had also been present at initial diagnosis. The emergence of host cells in this case, detected only by PCR techniques but not by cytogenetic methods, appeared to herald overt relapse. PCR analysis provides a sensitive tool for detecting a progressive rise in host cell numbers which may predict clinical relapse.
Resumo:
Retinitis pigmentosa (RP) is the most prevalent human retinopathy of genetic origin. Chromosomal locations for X-linked RP and autosomal dominant RP genes have recently been established. Multipoint analyses with ADRP and seven markers on the long arm of chromosome 3 demonstrate that the gene for rhodopsin, the pigment of the rod photoreceptors, cosegregates with the disease locus with a maximum lod score of approximately 19, implicating rhodopsin as a causative gene. Recent studies have indicated the presence of a point mutation at codon 23 in exon 1 of rhodopsin which results in the substitution of histidine for the highly conserved amino acid proline, suggesting that this mutation is a cause of rhodopsin-linked ADRP. This mutation is not present in the Irish pedigree in which ADRP has been mapped close to rhodopsin. Another mutation in the rhodopsin gene or in a gene closely linked to rhodopsin may be involved. Moreover, the gene in a second ADRP pedigree, with Type II late onset ADRP, does not segregate with chromosome 3q markers, indicating that nonallelic as well as perhaps allelic genetic heterogeneity exists in the autosomal dominant form of this disease.
Resumo:
BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression.
OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected.
DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature.
RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for.
CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.
Resumo:
Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.
A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH
Resumo:
BACKGROUND: Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples.
RESULTS: In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC outliers that might indicate microevents. These microevents were validated by the oligo platform results.
CONCLUSION: This article presents a genome-wide statistical validation of the oligo array platform on a large set of patient samples and demonstrates statistically its superiority over the BAC platform for the Identification of chromosomic events. Taking advantage of a large set of human samples treated by the two technologies, a statistical model has been developed to show that the BAC platform could also detect microevents.
Resumo:
'Boar taint' is a strong perspiration-like, urine-like unpleasant odour given off upon heating or cooking of meat from some intact (uncastrated) male pigs. Data from the F(2) generation of a Large White (LW) x Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for traits associated with boar taint. Fat samples from 178 intact male pigs slaughtered at 85 +/- 5 kg were analysed for the major contributors to boar taint (androstenone, indole and skatole). Fat and lean samples from cooked meat were scored for boar, abnormal and pork flavour and odour by a trained sensory panel (SP). A scan with 117 markers covering the whole genome was performed in the F(2) individuals, together with their F(1) parents and purebred grandparents. At the 5% chromosomal significance threshold (approximately equal to the genome-wide suggestive significance threshold), QTL were detected for the laboratory estimate of androstenone on chromosomes 2, 4, 6, 7 and 9. However, only on chromosome 6 were there QTL for boar flavour (BF) traits in the same or adjacent marker intervals as a QTL for the laboratory estimate of androstenone. On chromosome 14, QTL were detected for the laboratory estimates of indole and skatole, the SP score for skatole and the scores for BF in lean and BF in fat. In all five cases, the MS allele generally increased the estimate or score, compared with the LW allele, but it appeared that desirable and undesirable alleles were present in both breeds. This locus on chromosome 14 has considerable potential for use to reduce the incidence of boar taint, especially if further research can identify the causative polymorphism or strongly associated markers.
Resumo:
O gene ataxin-3 (ATXN3; 14q32.1) codifica uma proteína expressa ubiquamente, envolvida na via ubiquitina-proteassoma e na repressão da transcrição. Grande relevância tem sido dada ao gene ATXN3 após a identificação de uma expansão (CAG)n na sua região codificante, responsável pela ataxia mais comum em todo o mundo, SCA3 ou doença de Machado-Joseph (DMJ). A DMJ é uma doença neurodegenerativa, autossómica dominante, de início tardio. O tamanho do alelo expandido explica apenas uma parte do pleomorfismo da doença, evidenciando a importância do estudo de outros modificadores. Em doenças de poliglutaminas (poliQ), a toxicidade é causada por um ganho de função da proteína expandida; no entanto, a proteína normal parece ser, também, um dos agentes modificadores da patogénese. O gene ATXN3 possui dois parálogos humanos gerados por retrotransposição: ataxin-3 like (ATXN3L) no cromossoma X, e LOC100132280, ainda não caracterizado, no cromossoma 8. Estudos in vitro evidenciaram a capacidade da ATXN3L para clivar cadeias de ubiquitina, sendo o seu domínio proteolítico mais eficiente do que o domínio da ATXN3 parental. O objetivo deste estudo foi explorar a origem e a evolução das retrocópias ATXN3L e LOC100132280 (aqui denominadas ATXN3L1 e ATXN3L2), assim como testar a relevância funcional de ambas através de abordagens evolutivas e funcionais. Deste modo, para estudar a divergência evolutiva dos páralogos do gene ATXN3: 1) analisaram-se as suas filogenias e estimou-se a data de origem dos eventos de retrotransposição; 2) avaliaram-se as pressões seletivas a que têm sido sujeitos os três parálogos, ao longo da evolução dos primatas; e 3) explorou-se a evolução das repetições CAG, localizadas em três contextos genómicos diferentes, provavelmente sujeitos a diferentes pressões seletivas. Finalmente, para o retrogene que conserva uma open reading frame (ORF) intacta, ATXN3L1, analisou-se, in silico, a conservação dos locais e domínios proteicos da putativa proteína. Ademais, para este retrogene, foi estudado o padrão de expressão de mRNA, através da realização de PCR de Transcriptase Reversa, em 16 tecidos humanos. Os resultados obtidos sugerem que dois eventos independentes de retrotransposição estiveram na origem dos retrogenes ATXN3L1 e ATXN3L2, tendo o primeiro ocorrido há cerca de 63 milhões de anos (Ma) e o segundo após a divisão Platirrínios-Catarrínios, há cerca de 35 Ma. Adicionalmente, outras retrocópias foram encontradas em primatas e outros mamíferos, correspondendo, no entanto, a eventos mais recentes e independentes de retrotransposição. A abordagem evolutiva mostrou a existência de algumas constrições selectivas associadas à evolução do gene ATXN3L1, à semelhança do que acontece com ATXN3. Por outro lado, ATXN3L2 adquiriu codões stop prematuros que, muito provavelmente, o tornaram num pseudogene processado. Os resultados da análise de expressão mostraram que o gene ATXN3L1 é transcrito, pelo menos, em testículo humano; no entanto, a optimização final da amplificação específica dos transcriptos ATXN3L1 permitirá confirmar se a expressão se estende a outros tecidos. Relativamente ao mecanismo de mutação inerente à repetição CAG, os dois parálogos mostraram diferentes padrões de evolução: a retrocópia ATXN3L1 é altamente interrompida e pouco polimórfica, enquanto a ATXN3L2 apresenta tratos puros de (CAG)n em algumas espécies e tratos hexanucleotídicos de CGGCAG no homem e no chimpanzé. A recente aquisição da repetição CGGCAG pode ter resultado de uma mutação inicial de CAG para CGG, seguida de instabilidade que proporcionou a expansão dos hexanucleótidos.Estudos futuros poderão ser realizados no sentido de confirmar o padrão de expressão do gene ATXN3L1 e de detetar proteína endógena in vivo. Adicionalmente, a caracterização da proteina ataxina-3 like 1 e dos seus interatores moleculares poderá povidenciar informação acerca da sua relevância no estado normal e patológico.