996 resultados para Charge generation
Resumo:
Picosecond time-resolved resonance Raman spectra of the A (intramolecular charge transfer, ICT) state of DMABN, DMABN-d(6) and DMABN-N-15 have been obtained. The isotopic shifts identify the nu (s)(ph-N) mode as a band at 1281 cm(-1). The similar to 96 cm(-1) downshift of this mode from its ground state frequency rules out the electronic coupling PICT model and unequivocally supports the electronic decoupling TICT model. However, our results suggest some pyramidal character of the A state amino conformation.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.
Resumo:
Current-voltage (I-V) and impedance measurements were carried out in doped poly(3-methylthiophene) devices by varying the carrier density. As the carrier concentration reduces the I-V characteristics indicate that the conduction mechanism is limited by metal-polymer interface, as also observed in impedance data. The temperature dependence of I-V in moderately doped samples shows a trap-controlled space-charge-limited conduction (SCLC); whereas in lightly doped devices injection-limited conduction is observed at lower bias and SCLC at higher voltages. The carrier density-dependent quasi-Fermi level adjustment and trap-limited transport could explain this variation in conduction mechanism. Capacitance measurements at lower frequencies and higher bias voltages show a sign change in values due to the significant variations in the relaxation behaviour for lightly and moderately doped samples. The electrical hysteresis increases as carrier density is reduced due to the time scales involved in the de-trapping of carriers.
Resumo:
Molecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.
Resumo:
The IEEE 802.16/WiMAX standard has fully embraced multi-antenna technology and can, thus, deliver robust and high transmission rates and higher system capacity. Nevertheless,due to its inherent form-factor constraints and cost concerns, a WiMAX mobile station (MS) should preferably contain fewer radio frequency (RF) chains than antenna elements.This is because RF chains are often substantially more expensive than antenna elements. Thus, antenna selection, wherein a subset of antennas is dynamically selected to connect to the limited RF chains for transceiving, is a highly appealing performance enhancement technique for multi-antenna WiMAX terminals.In this paper, a novel antenna selection protocol tailored for next-generation IEEE 802.16 mobile stations is proposed. As demonstrated by the extensive OPNET simulations, the proposed protocol delivers a significant performance improvement over conventional 802.16 terminals that lack the antenna selection capability. Moreover, the new protocol leverages the existing signaling methods defined in 802.16, thereby incurring a negligible signaling overhead and requiring only diminutive modifications of the standard. To the best of our knowledge, this paper represents the first effort to support antenna selection capability in IEEE 802.16 mobile stations.
Resumo:
We derive bounds on leptonic double mass insertions of the type delta(l)(i4)delta(l)(4j) in four generational MSSM, using the present limits on l(i) -> l(j) + gamma. Two main features distinguish the rates of these processes in MSSM4 from MSSM3: (a) tan beta is restricted to be very small less than or similar to 3 and (b) the large masses for the fourth generation leptons. In spite of small tan beta, there is an enhancement in amplitudes with LLRR (4 delta(ll)(i4)delta(rr)(4j)) type insertions which pick up the mass of the fourth generation lepton, m(tau'). We find these bounds to be at least two orders of magnitude more stringent than those in MSSM3. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Technology scaling has caused Negative Bias Temperature Instability (NBTI) to emerge as a major circuit reliability concern. Simultaneously leakage power is becoming a greater fraction of the total power dissipated by logic circuits. As both NBTI and leakage power are highly dependent on vectors applied at the circuit’s inputs, they can be minimized by applying carefully chosen input vectors during periods when the circuit is in standby or idle mode. Unfortunately input vectors that minimize leakage power are not the ones that minimize NBTI degradation, so there is a need for a methodology to generate input vectors that minimize both of these variables.This paper proposes such a systematic methodology for the generation of input vectors which minimize leakage power under the constraint that NBTI degradation does not exceed a specified limit. These input vectors can be applied at the primary inputs of a circuit when it is in standby/idle mode and are such that the gates dissipate only a small amount of leakage power and also allow a large majority of the transistors on critical paths to be in the “recovery” phase of NBTI degradation. The advantage of this methodology is that allowing circuit designers to constrain NBTI degradation to below a specified limit enables tighter guardbanding, increasing performance. Our methodology guarantees that the generated input vector dissipates the least leakage power among all the input vectors that satisfy the degradation constraint. We formulate the problem as a zero-one integer linear program and show that this formulation produces input vectors whose leakage power is within 1% of a minimum leakage vector selected by a search algorithm and simultaneously reduces NBTI by about 5.75% of maximum circuit delay as compared to the worst case NBTI degradation. Our paper also proposes two new algorithms for the identification of circuit paths that are affected the most by NBTI degradation. The number of such paths identified by our algorithms are an order of magnitude fewer than previously proposed heuristics.