991 resultados para Cerebrovascular Circulation
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.
Resumo:
BACKGROUND: Minimal extracorporeal circulation (MECC) is a promising perfusion technology, taking the advantage of an ECC while having a significantly reduced priming volume. We analyzed the actual possible benefits of using MECC in patients undergoing CABG procedures and compared the results with conventional extracorporeal circulation (CECC). METHODS: One thousand fifty-three consecutive patients underwent CABG surgery using the MECC perfusion technique. Subgroup analyses focused on perioperative myocardial markers (cardiac troponin I [cTnI]), incidence of atrial fibrillation (AF), and perioperative evaluation of inflammatory markers and data were compared with those of patients who underwent CABG using CECC. A propensity score analysis was performed. RESULTS: Patient characteristics and distribution of EuroSCORE risk were similar in both groups. Severity of coronary artery disease and extent of revascularization were also comparable in both groups (number of distal anastomoses: 3.2 +/- 1.1 in CECC vs 3.2 +/- 0.9 in MECC; p = not significant [ns]). The cTnI was significantly lower in the MECC group (11.0 +/- 10.8 microg/L in MECC vs 24.7 +/- 25.3 microg/L in CECC; p < 0.05). Incidence of AF was 11.1% in MECC and 39.0% in CECC (p < 0.05). Inflammatory markers (interleukin-6, SC5b-9) were lower in MECC patients (p < 0.05). Propensity score analysis confirmed faster recovery in MECC patients and lower incidence of AF. CONCLUSIONS: Minimal extracorporeal circulation is a safe perfusion technique for CABG and may therefore concurrence OPCAB and traditional CABG under CECC.
On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
BACKGROUND: Studies continue to identify percutaneous coronary intervention procedural volume both at the institutional level and at the operator level as being strongly correlated with outcome. High-volume centers have been defined as those that perform >400 percutaneous coronary intervention procedures per year. The relationship between drug-eluting stent procedural volume and outcome is unknown. We investigated this relationship in the German Cypher Registry. METHODS AND RESULTS: The present analysis included 8201 patients treated with sirolimus-eluting stents between April 2002 and September 2005 in 51 centers. Centers that recruited >400 sirolimus-eluting stent patients in this time period were considered high-volume centers; those with 150 to 400 patients were considered intermediate-volume centers; and those with <150 patients were designated as low-volume centers. The primary end point was all death, myocardial infarction, and target-vessel revascularization at 6 months. This end point occurred in 11.3%, 12.1%, and 9.0% of patients in the low-, intermediate-, and high-volume center groups, respectively (P=0.0001). There was no difference between groups in the rate of target-vessel revascularization (P=0.2) or cerebrovascular accidents (P=0.5). The difference in death/myocardial infarction remained significant after adjustment for baseline factors (odds ratio 1.85, 95% confidence interval 1.31 to 2.59, P<0.001 for low-volume centers; odds ratio 1.69, 95% confidence interval 1.29 to 2.21, P<0.001 for intermediate-volume centers). Patient and lesion selection, procedural features, and postprocedural medications differed significantly between groups. CONCLUSIONS: The volume of sirolimus-eluting stent procedures performed on an institutional level was inversely related to death and myocardial infarction but not to target-vessel revascularization at 6-month follow-up. Safety issues are better considered in high-volume centers. These findings have important public health policy implications.