917 resultados para Ceramic foam


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the adhesive quality of simplified self-adhesive and conventional resin cements to Y-TZP in dry and aged conditions. Methods: Y-TZP ceramic blocks (N=192) (5 x 5 x 2 mm) were embedded in acrylic resin and randomly divided into two groups, based on surface conditioning: 96% isopropanol or chairside tribochemical silica coating and silanization. Conditioned ceramics were divided into four groups to receive the resin cements (Panavia F 2.0, Variolink II, RelyX U100 and Maxcem). After 24 hours, half of the specimens (n=12) from each group were submitted to shear bond strength testing (0.5 nun/minute). The remaining specimens were tested after 90 days of water storage at 37 degrees C and thermocycling (12,000x, 5 degrees C-55 degrees C). Failure types were then assessed. The data were analyzed using three-way ANOVA and the Tukey's test (alpha=0.05). Results: Significant effects of ceramic conditioning, cement type and storage conditions were observed (p<0.0001). The groups cleaned using alcohol only showed low bond strength values in dry conditions and the bond strength was reduced dramatically after aging. Groups conditioned using silica coating and silanization showed higher bond strengths both in dry and aged conditions. A high number of specimens failed prematurely prior to testing when they were cleaned using 96% isopropanol. Conclusion: Overall, silica coating and silanization showed higher, stable bond strengths with and without aging. The durability of resin-ceramic adhesion varied, depending on the adhesive cement type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunohistochemical studies on renal biopsies from eight patients with various types of glomerulonephritis showed that the interstitial foam cells belonged to the monocyte-macrophage lineage. There was a strong association between hypercholesterolaemia and the presence of renal interstitial foam cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and characterization of transparent glass-ceramics in the composition of 30Li2O:5ZrO2:xBaO:(100-x) SiO2 with x = 0, 5, 10, 15, and 20 mol% are described. Glasses were melted in a platinum crucible at 1100°C for 2 h and then heat-treated at 900°C for 3 h. The characterizations were performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopy, and scanning electron microscopy (SEM). The experimental results indicate that there was a structural change in the glass-ceramics as the BaO concentration in the mixture increased. In the XRD patterns of samples without heat treatment, only the halo was observed. After heat treatment, the appearance of the materials was verified by X-ray diffraction peaks. The reorganization of the amorphous solid was confirmed by Raman and IR spectroscopy along with XPS and SEM, with a more homogeneous phase formation being observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fractal model for grain boundary regions of ceramic materials was developed. The model considers laterally inhomogeneous distribution of charge carriers in the vicinity of grain boundaries as the main cause of the non-Debye behaviour and distribution of relaxation times in ceramic materials. Considering the equivalent circuit the impedance of the grain boundary region was expressed. It was shown that the impedance of the grain boundary region has the form of the Davidson-Cole equation. The fractal dimension of the inhomogeneous distribution of charge carriers in the region close to the grain boundaries could be calculated based on the relation ds = 1 + β, where β is the constant from the Davidson-Cole equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, has been usually applied to probe space charge profiles in polymers. Preliminary PEA results using a ferroelectric ceramic are presented. If the reverse applied electric field i of the order of the coercive field the switching polarization process occurs in a period larger than hundreds of seconds. Such a slow process allows one to use the PEA setup to follow the polarization switching dynamics and determine the electric field profile. The PEA signal obtained in the lead zirconate-titanate doped with niobium ceramic, PZTN, indicates that the polarization distribution and field are not uniform during the switching period. We were also able to observe that the acoustic wave velocity and attenuation depends on the stage of the polarization switching, which agrees with results obtained using the ultrasonic method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.