979 resultados para Cell motility
Resumo:
Basal cell carcinoma (BCC) is a skin cancer of particular importance to the Australian community. Its rate of occurrence is highest in Queensland, where 1% to 2% of people are newly affected annually. This is an order of magnitude higher than corresponding incidence estimates in European and North American populations. Individuals with a sun-sensitive complexion are particularly susceptible because sun exposure is the single most important causative agent, as shown by the anatomic distribution of BCC which is in general consistent with the levels of sun exposure across body sites. A distinguishing feature of BCC is the occurrence of multiple primary tumours within individuals, synchronously or over time, and their diagnosis and treatment costs contribute substantially to the major public health burden caused by BCC. A primary knowledge gap about BCC pathogenesis however was an understanding of the true frequency of multiple BCC occurrences and their body distribution, and why a proportion of people do develop more than one BCC in their life. This research project sought to address this gap under an overarching research aim to better understand the detailed epidemiology of BCC with the ultimate goal of reducing the burden of this skin cancer through prevention. The particular aim was to document prospectively the rate of BCC occurrence and its associations with constitutional and environmental (solar) factors, all the while paying special attention to persons affected by more than one BCC. The study built on previous findings and recent developments in the field but set out to confirm and extend these and propose more adequate theories about the complex epidemiology of this cancer. Addressing these goals required a new approach to researching basal cell carcinoma, due to the need to account for the phenomenon of multiple incident BCCs per person. This was enabled by a 20 year community-based study of skin cancer in Australians that provided the methodological foundation for this thesis. Study participants were originally randomly selected in 1986 from the electoral register of all adult residents of the subtropical township of Nambour in Queensland, Australia. On various occasions during the study, participants were fully examined by dermatologists who documented cumulative photodamage as well as skin cancers. Participants completed standard questionnaires about skin cancer-related factors, and consented to have any diagnosed skin cancers notified to the investigators by regional pathology laboratories in Queensland. These methods allowed 100% ascertainment of histologically confirmed BCCs in this study population. 1339 participants had complete follow-up to the end of 2007. Statistical analyses in this thesis were carried out using SAS and SUDAAN statistical software packages. Modelling methods, including multivariate logistic regressions, allowed for repeated measures in terms of multiple BCCs per person. This innovative approach gave new findings on two levels, presented in five chapters as scientific papers: 1. Incidence of basal cell carcinoma multiplicity and detailed anatomic distribution: longitudinal study of an Australian population The incidence of people affected multiple times by BCC was 705 per 100,000 person years compared to an incidence rate of people singly affected of 935 per 100,000 person years. Among multiply and singly affected persons alike, site-specific BCC incidence rates were far highest on facial subsites, followed by upper limbs, trunk, and then lower limbs 2. Melanocytic nevi and basal cell carcinoma: is there an association? BCC risk was significantly increased in those with forearm nevi (Odds Ratios (OR) 1.43, 95% Confidence Intervals (CI) 1.09-1.89) compared to people without forearm nevi, especially among those who spent their time mainly outdoors (OR 1.6, 95%CI 1.1-2.3) compared to those who spent their time mainly indoors. Nevi on the back were not associated with BCC. 3. Clinical signs of photodamage are associated with basal cell carcinoma multiplicity and site: a 16-year longitudinal study Over a 16-year follow-up period, 58% of people affected by BCC developed more than one BCC. Among these people 60% developed BCCs across different anatomic sites. Participants with high numbers of solar keratoses, compared to people without solar keratoses, were most likely to experience the highest BCC counts overall (OR 3.3, 95%CI 1.4-13.5). Occurrences of BCC on the trunk (OR 3.3, 95%CI 1.4-7.6) and on the limbs (OR 3.7, 95%CI 2.0-7.0) were strongly associated with high numbers of solar keratoses on these sites. 4. Occurrence and determinants of basal cell carcinoma by histological subtype in an Australian community Among 1202 BCCs, 77% had a single growth pattern and 23% were of mixed histological composition. Among all BCCs the nodular followed by the superficial growth patterns were commonest. Risk of nodular and superficial BCCs on the head was raised if 5 or more solar keratoses were present on the face (OR 1.8, 95%CI 1.2-2.7 and OR 4.5, 95%CI 2.1-9.7 respectively) and similarly on the trunk in the presence of multiple solar keratoses on the trunk (OR 4.2, 95%CI 1.5-11.9 and OR 2.2, 95%CI 1.1-4.4 respectively). 5. Basal cell carcinoma and measures of cumulative sun exposure: an Australian longitudinal community-based study Dermal elastosis was more likely to be seen adjacent to head and neck BCCs than trunk BCCs (p=0.01). Severity of dermal elastosis increased on each site with increasing clinical signs of cutaneous sun damage on that site. BCCs that occurred without perilesional elastosis per se, were always found in an anatomic region with signs of photodamage. This thesis thus has identified the magnitude of the burden of multiple BCCs. It does not support the view that people affected by more than one BCC represent a distinct group of people who are prone to BCCs on certain body sites. The results also demonstrate that BCCs regardless of site, histology or order of occurrence are strongly associated with cumulative sun exposure causing photodamage to the skin, and hence challenge the view that BCCs occurring on body sites with typically low opportunities for sun exposure or of the superficial growth pattern are different in their association with the sun from those on typically sun-exposed sites, or nodular BCCs, respectively. Through dissemination in the scientific and medical literature, and to the community at large, these findings can ultimately assist in the primary and secondary prevention of BCC, perhaps especially in high-risk populations.
Resumo:
Does the current global political economic framework, or more specifically, the cost-price squeeze associated with primary production, restrict the choices of Australian cattle graziers in moving to more sustainable practices? It has often been argued by primary producers and academics, alike, that current terms of trade have resulted in reduced profitability at the property level, and as such, have made it difficult for landholders to shift to practices which are environmentally sustainable. Whilst there is mounting evidence that this is case, there is also evidence that some graziers have been able to adapt to the prevailing market conditions through an ideological as well as ‘practice’ shift. Findings from qualitative research in Central Queensland, Australia has highlighted how ‘cell grazing’ departs from the traditional or conventional aspects of grazing which can be described as productivist, to an approach closely approximating Lang and Heasman’s (2004) ‘ecologically integrated paradigm’. It is argued that cell grazing is, at present, a marginal activity that requires an ideological and cultural shift, as well as an investment in new infrastructure, however, current cell grazing activities may also demonstrate that beef grazing has the potential to be both economically and environmentally sustainable.
Resumo:
Regenerative medicine includes two efficient techniques, namely tissue-engineering and cell-based therapy in order to repair tissue damage efficiently. Most importantly, huge numbers of autologous cells are required to deal these practices. Nevertheless, primary cells, from autologous tissue, grow very slowly while culturing in vitro; moreover, they lose their natural characteristics over prolonged culturing period. Transforming growth factors-beta (TGF-β) is a ubiquitous protein found biologically in its latent form, which prevents it from eliciting a response until conversion to its active form. In active form, TGF-β acts as a proliferative agent in many cell lines of mesenchymal origin in vitro. This article reviews on some of the important activation methods-physiochemical, enzyme-mediated, non-specific protein interaction mediated, and drug-induced- of TGF-β, which may be established as exogenous factors to be used in culturing medium to obtain extensive proliferation of primary cells.
Resumo:
Recent literature suggests that mesenchymal stem/stromal cells (MSC) could be used as Trojan Horses to deliver “death-signals” to cancer cells. Herein, we describe the development of a novel multichannel cell migration device, and use it to investigate the relative migration rates of bone marrow-derived MSC and breast cancer cells (MCF-7) towards each other. Confluent monolayers of MSC and MCF-7 were established in adjacent chambers separated by an array of 14 microchannels. Initially, culture chambers were isolated by air bubbles (air-valves) contained within each microchannel, and then bubbles were displaced to initiate the assay. The MCF-7 cells migrated preferentially towards MSC, whilst the MSC did not migrate preferentially towards the MCF-7 cells. Our results corroborate previous literature that suggests MSC migration towards cancer cells in vivo is in response to the associated inflammation rather than directly to signals secreted by the cancer cells themselves.
Resumo:
Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.
Resumo:
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Resumo:
A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.
Resumo:
Bone, tendon, and cartilage are highly specialized musculoskeletal connective tissues that are subject to injury and degeneration. These tissues have relatively poor healing capabilities, and coupled with their variable response to established medical treatments, produce significant morbidity. Mesenchymal stem cells (MSCs) are capable of regenerating skeletal tissues and therefore offer great promise in the treatment of connective tissue pathologies. Adult MSCs are multipotent cells that possess the properties of proliferation and differentiation into all connective tissues. Furthermore, they can be gene modified to secrete growth factors and utilized in connective tissue engineering. Potential MSC-based therapies for bone and tendon conditions are reviewed in this chapter.
Resumo:
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation.This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Resumo:
Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1–4) and glypicans (GPC1–6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.
Resumo:
Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell-cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells towards the ultimate aim of high throughput screening of anti-cancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).
Resumo:
Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.
Resumo:
Upon overexpression of integrin αvβ3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of αvβ3 expression levels. Thus in the present study we characterized αvβ3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to αvβ3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by αvβ3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon αvβ3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by αvβ3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced αvβ3, involving this DNA element in αvβ3-dependent EGF-R upregulation. Moreover, αvβ3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying αvβ3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk−1/erk−2), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon αvβ3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin αvβ3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.
Resumo:
While both the restoration of the blood supply and an appropriate local mechanical environment are critical for uneventful bone healing, their influence on each other remains unclear. Human bone fracture haematomas (<72h post-trauma) were cultivated for 3 days in fibrin matrices, with or without cyclic compression. Conditioned medium from these cultures enhanced the formation of vessel-like networks by HMEC-1 cells, and mechanical loading further elevated it, without affecting the cells’ metabolic activity. While haematomas released the angiogenesis-regulators, VEGF and TGF-β1, their concentrations were not affected by mechanical loading. However, direct cyclic stretching of the HMEC-1 cells decreased network formation. The appearance of the networks and a trend towards elevated VEGF under strain suggested physical disruption rather than biochemical modulation as the responsible mechanism. Thus, early fracture haematomas and their mechanical loading increase the paracrine stimulation of endothelial organisation in vitro, but direct periodic strains may disrupt or impair vessel assembly in otherwise favourable conditions.