898 resultados para Cell culture techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we prepare carbon nanotubes modified with ammonium persulfate, very short carbon nanotubes with 50-100 nanometer length was obtained, and the higher P potential of 52 mV was detected, these supporting the successful modification. HeLa cells were irradiated with P rays via adding or absent above functionalized carbon nanotubes (f- WCNTs) into cell culture medium with different concentration and radiation dosage. Confocal microscopy images and fluorescence-labeled DNA detection verified the successfully pure multi-walled carbon nanotubes (p-WCNTs) and f-WCNTs penetrated into cells. Compared with pure radiation, by MTT test, f-WCNTs induced cell death markedly with about 8.7 times higher than former one under little dose of radiation; meanwhile, no obvious toxicity was observed both in p-WCNTs and f-WCNTs without of radiation exposure. We hypothesized that large amount of hydroxyl and carbonyl organs on the surface of very short f-WCNTs changed into free radicals result from radiations led cell damage. These implied that f-WCNTs could be regarded as a new radiosensitizer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

meso-Tetra (alpha, alpha, alpha, alpha-O-phenylacetyl benzene) porphyrin was used as a complete antigen to elicit monoclonal antibody 1F2 through the immunization and cell fusion techniques. McAb 1F2 obtained was demonstrated very pure by HPLC and MALDI/TOFMS. The retention time of McAb 1F2 was 2. 63 min. The subtype of McAb 1F2 was IgG2a. The relative molecular weight was 156 678. 8. When the McAb 1F2-porphyrin was formed, the maximal absorption of the porphyrin soret region had a redshift from 408 to 416 nm and hyperchromical effect, showing that the antigen-antibody combination was rigid and intense, and the abzyme constancy was high. But compared with HRP, the activity of the abzyme was only 4. 687 5 U/mg and 1. 899 % of that of HRP. Its K-m was 20. 29 mmol/L, k(cat) 396. 82 min(-1), k(cat)/K-m. 1. 955 7 X 10(4) L . mol(-1) . min(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allophycocyanin is a phycobiliprotein with various biological and pharmacological properties. An expression vector was constructed using CpeS as the bilin lyase for the allophycocyanin beta subunit, resulting in overexpression of a fluorescent allophycocyanin beta-subunit in Escherichia coli. A high-density cell culture was developed using a continuous feeding strategy. After 16 h of culture, the dry cell density reached 21.4 g 1(-1), the expression of the allophycocyanin beta-subunit was 0.86 g l(-1) broth, and the relative chromoprotein yield was 81.4%. The recombinant protein showed spectral features similar to native allophycocyanin, which provide an efficient methodology for large-scale production of this valuable fluorescent protein. (C) 2008, The Society for Biotechnology, Japan. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have I I amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site I are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, in Vitis vinifera cell cultures. Therefore, four cell line suspensions of Vitis vinitera L. var. Gamay Freaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of 2.73 +/- 0.15, 1.45 +/- 0.04, 0.77 +/- 0.024 and 0.27 +/- 0.04 CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and 84% for V vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be 9.7%, ranging from 4 to 17%. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities to L-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line, showed greater potential in enhanced the anthocyanin production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue kallikrein, generally existing in living bodies as prokallikrein, is a serine proteinase that has proven of great significance to treat hypertension, cardiopathy and nephropathy. Although the extraction of tissue kallikrein from human urine is the most commonly used method to obtain such a protein, not only the yield is very little, but also the procedure is rather complex. Furthermore, the biological safety is uncertain. Therefore, the preparation of such a protein by genetic engineering method, including gene expression, cell culture, separation and purification, is very important. In this paper, a new method to obtain purified tissue prokallikrein excreted from insect cells by liquid chromatography has been proposed. In contrast to the previously published papers, the purification procedure is simplified to only three steps with the final yield of 57% and the purity of 95%, which is not only convenient, but also low-cost and suitable for the large-scale preparation of such a protein. The purified protein is further validated as prokallikrein by high performance liquid chromatography-mass spectrometry and amino acid sequencing. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ebolaviruses (EBOVs) are among the most virulent and deadly pathogens ever known, causing fulminant haemorrhagic fevers in humans and non-human primates. The 2014 outbreak of Ebola virus disease (EVD) in West Africa has claimed more lives than all previous EVD outbreaks combined. The EBOV high mortality rates have been related to the virus-induced impairment of the host innate immunity reaction due to two virus-coded proteins, VP24 and VP35. EBOV VP35 is a multifunctional protein, it is essential for viral replication as a component of the viral RNA polymerase and it also participates in nucleocapsid assembly. Early during EBOV infection, alpha-beta interferon (IFN-α/β) production would be triggered upon recognition of viral dsRNA products by cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). However, this recognition is efficiently prevented by the double-stranded RNA (dsRNA) binding activity of the EBOV VP35 protein, which hides RLRs binding sites on the dsRNA phosphate backbone as well the 5’-triphosphate (5’-ppp) dsRNA ends to RIG-I recognition. In addition to dsRNA binding and sequestration, EBOV VP35 inhibits IFN-α/β production preventing the activation of the IFN regulatory factor 3 (IRF-3) by direct interaction with cellular proteins. Previous studies demonstrated that single amino acid changes in the VP35 dsRNA binding domain reduce EBOV virulence, indicating that VP35 is an attractive target for antiviral drugs development. Within this context, here we report the establishment of a novel method to characterize the EBOV VP35 inhibitory function of the dsRNA-dependent RIG-I-mediated IFN-β signaling pathway in a BLS2 cell culture setting. In such system, a plasmid containing the promoter region of IFN-β gene linked with a luciferase reporter gene was transfected, together with a EBOV VP35 mammalian expression plasmid, into the IFN-sensitive A549 cell line, and the IFN-induction was stimulated through dsRNA transfection. Through alanine scanning mutational studies with biochemical, cellular and computational methods we highlighted the importance of some VP35 residues involved in dsRNA end-capping binding, such as R312, K282 and R322, that may serve as target for the development of small-molecule inhibitors against EBOV. Furthermore, we identified a synthetic compound that increased IFN-induction only under antiviral response stimulation and subverted VP35 inhibition, proving to be very attractive for the development of an antiviral drug. In conclusion, our results provide the establishment of a new assay as a straightforward tool for the screening of antiviral compounds that target i) dsRNA-VP35 or cellular protein-VP35 interaction and ii) dsRNA-dependent RIG-I-mediated IFN signaling pathway, in order to potentiate the IFN response against VP35 inhibition, setting the bases for further drug development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overall aims of this study were to investigate the differences between raw/farm milk and pasteurised milk with respect to potential immune modifying effects following consumption and investigate the bacterial composition of raw milk compared to pasteurised milk. Furthermore, in this thesis, panels of potential probiotic bacteria from the Bifidobacterium and Lactobacillus genera were investigated. The overall bacterial composition of raw milk was compared with pasteurised milk using samples obtained from commercial milk producers around Ireland using next generation sequencing technology (454 pyrosequencing). Here the presence of previously unrecognised and diverse bacterial populations in unpasteurised cow’s milk was identified. Futhermore the bacterial content of pasteurised milk was found to be more diverse than previously thought. The global response of the adenocarcinoma cell line HT-29 to raw milk and pasteurised milk exposures were also characterised using whole genome microarray technology. Over one thousand differentially expressed genes were identified which were found to be involved in a plethora of cellular functions. Interestingly a reduction in immune related activity (e.g. Major histocompatability complex class II signalling and T and B cell proliferation) was identified in cells exposed to pasteurised milk compared with raw milk exposures. Further studies comparing human cell response to raw versus pasteurised milk was performed using peripheral blood mononuclear cells (PBMC) from healthy donors. A reduction in CD14 was identified following raw milk exposures compared with pasteurised milk and the pattern of cytokine production may indicate that gram positive bacteria in the raw milk were contributing to the differences in the cellular response to raw versus pasteurised milk. Panels of potentially probiotic bacteria (comprising of lactobacilli and bifidobacteria) were further assessed for immunomodulatory capabilities using cell culture based models. Gene expression and cytokine production were used to evaluate stimulated and unstimulated (LPS) cellular responses as well as interaction mechanisms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca(2+) transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FNDC5 (fibronectin domain-containing [protein] 5) was initially discovered and characterized by two groups in 2002. In 2011 FNDC5 burst into prominence as the parent of irisin, a small protein containing the fibronectin type III domain. Irisin was proposed to be secreted by skeletal muscle cells in response to exercise, and to circulate to fat tissue where it induced a transition to brown fat. Since brown fat results in dissipation of energy, this pathway is of considerable interest for metabolism and obesity. Here I review the original discoveries of FNDC5 and the more recent discovery of irisin. I note in particular three problems in the characterization of irisin: the antibodies used to detect irisin in plasma lack validity; the recombinant protein used to demonstrate activity in cell culture was severely truncated; and the degree of shedding of soluble irisin from the cell surface has not been quantitated. The original discovery proposing that FNDC5 may be a transmembrane receptor may deserve a new look.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Real-time polymerase chain reaction (PCR) has recently been described as a new tool to measure and accurately quantify mRNA levels. In this study, we have applied this technique to evaluate cytokine mRNA synthesis induced by antigenic stimulation with purified protein derivative (PPD) or heparin-binding haemagglutinin (HBHA) in human peripheral blood mononuclear cells (PBMC) from Mycobacterium tuberculosis-infected individuals. Whereas PPD and HBHA optimally induced IL-2 mRNA after respectively 8 and 16 to 24 h of in vitro stimulation, longer in vitro stimulation times were necessary for optimal induction of interferon-gamma (IFN-gamma) mRNA, respectively 16 to 24 h for PPD and 24 to 96 h for HBHA. IL-13 mRNA was optimally induced by in vitro stimulation after 16-48 h for PPD and after 48 to 96 h for HBHA. Comparison of antigen-induced Th1 and Th2 cytokines appears, therefore, valuable only if both cytokine types are analysed at their optimal time point of production, which, for a given cytokine, may differ for each antigen tested. Results obtained by real-time PCR for IFN-gamma and IL-13 mRNA correlated well with those obtained by measuring the cytokine concentrations in cell culture supernatants, provided they were high enough to be detected. We conclude that real-time PCR can be successfully applied to the quantification of antigen-induced cytokine mRNA and to the evaluation of the Th1/Th2 balance, only if the kinetics of cytokine mRNA appearance are taken into account and evaluated for each cytokine measured and each antigen analysed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oviductin is an oviduct-specific and high-molecular-weight glycoprotein that has been suggested to play important roles in the early events of reproduction. The present study was undertaken to localize the oviductin binding sites in the uterine epithelial cells of the golden hamster (Mesocricetus auratus) both in situ and in vitro, and to detect a hamster oviductin homologue in the female rat reproductive tract. Immunohistochemical localization of oviductin in the hamster uterus revealed certain uterine epithelial cells reactive to the monoclonal anti-hamster oviductin antibody. In order to study the interaction between hamster oviductin and the endometrium in vitro, a method for culturing primary hamster uterine epithelial cells has been established and optimized. Study with confocal microscopy of the cell culture system showed a labeling pattern similar to what was observed using immunohistochemistry. Pre-embedding immunolabeling of cultured uterine epithelial cells also showed gold particles associated with the plasma membrane and microvilli. These results demonstrated that hamster oviductin can bind to the plasma membrane of certain hamster uterine epithelial cells, suggesting the presence of a putative oviductin receptor on the uterine epithelial cell surface. In the second part of the present study, using the monoclonal anti-hamster oviductin antibody that cross-reacts with the rat tissue, we have been able to detect an oviduct-specific glycoprotein, with a molecular weight of 180~300kDa, in the female rat reproductive tract. Immunohistochemical labeling of the female rat reproductive tract revealed a strong immunolabeling in the non-ciliated oviductal epithelial cells and a faint immunoreaction on the cell surface of some uterine epithelial cells. Ultrastructurally, immunogold labeling was restricted to the secretory granules, Golgi apparatus, and microvilli of the non-ciliated secretory cells of the oviduct. In the uterus, immunogold labeling was observed on the cell surface of some uterine epithelial cells. Furthermore, electron micrographs of ovulated oocytes showed an intense immunolabeling for rat oviductin within the perivitelline space surrounding the ovulated oocytes. The findings of the present study demonstrated that oviductin is present in the rat oviduct and uterus, and it appears that, in the rat, oviductin is secreted by the non-ciliated secretory cells of the oviduct.