956 resultados para Cancionero de Romances (Anvers: 1550)
Resumo:
We report a measurement of the production cross section for b hadrons in pp̅ collisions at √s=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, Hb, partially reconstructed in the semileptonic decay mode Hb→μ-D0X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum pT>9 GeV/c and rapidity |y|<0.6 is σ=1.30 μb±0.05 μb(stat)±0.14 μb(syst)±0.07 μb(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections dσ/dpT are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions.
Resumo:
We present a measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with tt̅ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb-1 of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5±5.3 events, we measure a production cross section of 9.1±1.6 pb.
Resumo:
In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton, a photon, significant transverse momentum imbalance (MET), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at 1.96 TeV corresponding to 1.9 fb-1 of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 lepton+photon+MET+b events versus an expectation of 31.0+4.1/-3.5 events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, ttbar+photon. In the data we observe 16 ttbar+photon candidate events versus an expectation from SM sources of 11.2+2.3/-2.1. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the ttg cross section to be 0.15 +- 0.08 pb.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.
Resumo:
We report a measurement of the production cross section for b hadrons in pp̅ collisions at √s=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, Hb, partially reconstructed in the semileptonic decay mode Hb→μ-D0X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum pT>9 GeV/c and rapidity |y|<0.6 is σ=1.30 μb±0.05 μb(stat)±0.14 μb(syst)±0.07 μb(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections dσ/dpT are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions.
Resumo:
We present a measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with tt̅ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb-1 of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5±5.3 events, we measure a production cross section of 9.1±1.6 pb.
Resumo:
We present a search for new particles whose decays produce two jets (dijets) using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y|
Resumo:
We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD at finite temperature and density. We consider chiral sector described either using linear sigma model or Nambu-Jona-Lasinio model and study the phase diagram and determine the location of the critical point as a function of the explicit chiral symmetry breaking (i.e. the bare quark mass $m_q$). We also discuss the possible emergence of the quarkyonic phase in this model.
Resumo:
The cross section for photon production in association with at least one jet containing a $b$-quark hadron has been measured in proton antiproton collisions at $\sqrt{s}=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 340 pb$^{-1}$ collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy $E_T^{\gamma}$, $d \sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet)/$d E_T^{\gamma}$ and the total cross section $\sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet; $E_T^{\gamma}> 20$ GeV) are measured. Comparisons to a next-to-leading order prediction of the process are presented.
Resumo:
We report a measurement of the production cross section for b hadrons in p-pbar collisions at sqrt{s}=1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb^-1 collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H_b, partially reconstructed in the semileptonic decay mode H_b -> mu^- D^0 X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p_T > 9 GeV/c and rapidity |y|
Resumo:
We present a measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with $\ttbar$ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF Run II data sample corresponding to $2 \mathrm{fb^{-1}}$ of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of $79.5\pm5.3$ events, we measure a production cross section of $9.1\pm 1.6 \mathrm{pb}$.
Resumo:
A measurement of the top-quark pair-production cross section in ppbar collisions at sqrt{s}=1.96 TeV using data corresponding to an integrated luminosity of 1.12/fb collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e nu + jets and mu nu + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c^2, a cross section of 8.5+/-0.6(stat.)+/-0.7(syst.) pb is measured.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a different type of cross flow dielectric barrier discharge (DBD) reactor was designed and tested. Here the gas flow is perpendicular to the barrier discharge electrode. Discharge plasma was utilized to oxidize NO contained in the exhaust gas to NO2 and subsequent NO2 removal can be improved using an adsorbent system. A detailed study of DeNO(X) in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/adsorbent processes. Activated alumina (Al2O3) and MS-13x were used as adsorbents at room temperature. The main emphasis is laid on the removal of NOX from the filtered diesel engine exhaust. In filtered exhaust environment, the cross flow reactor along with adsorbent exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at various gas flow rates, ranging from 2 l/min to 25 l/min. The discharge plasma-adsorbent assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.
Resumo:
We report on a search for the production of the Higgs boson decaying to two bottom quarks accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity of approximately 4 fb-1 of pp̅ collisions at √s=1.96 TeV recorded by the CDF II experiment. This search includes twice the integrated luminosity of the previous published result, uses analysis techniques to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c2 and 150 GeV/c2 at the 95% confidence level. For a Higgs boson mass of 120 GeV/c2, the observed (expected) limit is 10.5 (20.0) times the predicted standard model cross section.