961 resultados para CYTOPLASMIC MATURATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common cytokine receptor γ chain (γc), a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. The cytoplasmic domain of γc consists of 85 aa, in which the carboxyl-terminal 48 aa are essential for its interaction with and activation of the Janus kinase, Jak3. Evidence has been provided that Jak3-independent signals might be transmitted via the residual membrane-proximal region; however, its role in vivo remains totally unknown. In the present study, we expressed mutant forms of γc, which lack either most of the cytoplasmic domain or only the membrane-distal Jak3-binding region, on a γc null background. We demonstrate that, unlike γc or Jak3 null mice, expression of the latter, but not the former mutant, restores T lymphopoiesis in vivo, accompanied by strong expression of Bcl-2. On the other hand, the in vitro functions of the restored T cells still remained impaired. These results not only reveal the hitherto unknown role of the γc membrane-proximal region, but also suggest the differential requirement of the cytoplasmic subregions of γc in T cell development and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retrovirus assembly and maturation involve folding and transport of viral proteins to the virus assembly site followed by subsequent proteolytic cleavage of the Gag polyprotein within the nascent virion. We report that inhibiting proteasomes severely decreases the budding, maturation, and infectivity of HIV. Although processing of the Env glycoproteins is not changed, proteasome inhibitors inhibit processing of Gag polyprotein by the viral protease without affecting the activity of the HIV-1 viral protease itself, as demonstrated by in vitro processing of HIV-1 Gag polyprotein Pr55. Furthermore, this effect occurs independently of the virus release function of the HIV-1 accessory protein Vpu and is not limited to HIV-1, as proteasome inhibitors also reduce virus release and Gag processing of HIV-2. Electron microscopy analysis revealed ultrastructural changes in budding virions similar to mutants in the late assembly domain of p6gag, a C-terminal domain of Pr55 required for efficient virus maturation and release. Proteasome inhibition reduced the level of free ubiquitin in HIV-1-infected cells and prevented monoubiquitination of p6gag. Consistent with this, viruses with mutations in PR or p6gag were resistant to detrimental effects mediated by proteasome inhibitors. These results indicate the requirement for an active proteasome/ubiquitin system in release and maturation of infectious HIV particles and provide a potential pharmaceutical strategy for interfering with retrovirus replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protein engineering strategy based on efficient and focused mutagenesis implemented by codon-based mutagenesis was developed. Vitaxin, a humanized version of the antiangiogenic antibody LM609 directed against a conformational epitope of the αvβ3 integrin complex, was used as a model system. Specifically, focused mutagenesis was used in a stepwise fashion to rapidly improve the affinity of the antigen binding fragment by greater than 90-fold. In the complete absence of structural information about the Vitaxin-αvβ3 interaction, phage-expressed antibody libraries for all six Ig heavy and light chain complementarity-determining regions were expressed and screened by a quantitative assay to identify variants with improved binding to αvβ3. The Vitaxin variants in these libraries each contained a single mutation, and all 20 amino acids were introduced at each complementarity-determining region residue, resulting in the expression of 2,336 unique clones. Multiple clones displaying 2- to 13-fold improved affinity were identified. Subsequent expression and screening of a library of 256 combinatorial variants of the optimal mutations identified from the primary libraries resulted in the identification of multiple clones displaying greater than 50-fold enhanced affinity. These variants inhibited ligand binding to receptor more potently as demonstrated by inhibition of cell adhesion and ligand competition assays. Because of the limited mutagenesis and combinatorial approach, Vitaxin variants with enhanced affinity were identified rapidly and required the synthesis of only 2,592 unique variants. The use of such small focused libraries obviates the need for phage affinity selection approaches typically used, permitting the use of functional assays and the engineering of proteins expressed in mammalian cell culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionarily conserved protein EB1 originally was identified by its physical association with the carboxyl-terminal portion of the adenomatous polyposis coli (APC) tumor suppressor protein, an APC domain commonly mutated in familial and sporadic forms of colorectal neoplasia. The subcellular localization of EB1 in epithelial cells was studied by using immunofluorescence and biochemical techniques. EB1 colocalized both to cytoplasmic microtubules in interphase cells and to spindle microtubules during mitosis, with pronounced centrosome staining. The cytoskeletal array detected by anti-EB1 antibody was abolished by incubation of the cells with nocodazole, an agent that disrupts microtubules; upon drug removal, EB1 localized to the microtubule-organizing center. Immunofluorescence analysis of SW480, a colon cancer cell line that expresses only carboxyl-terminal-deleted APC unable to interact with EB1, demonstrated that EB1 remained localized to the microtubule cytoskeleton, suggesting that this pattern of subcellular distribution is not mediated by its interaction with APC. In vitro cosedimentation with taxol-stabilized microtubules demonstrated that a significant fraction of EB1 associated with microtubules. Recent studies of the yeast EB1 homologues Mal3 and Bim1p have demonstrated that both proteins localize to microtubules and are important in vivo for microtubule function. Our results demonstrate that EB1 is a novel component of the microtubule cytoskeleton in mammalian cells. Associating with the mitotic apparatus, EB1 may play a physiologic role connecting APC to cellular division, coordinating the control of normal growth and differentiation processes in the colonic epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins are transported into and out of the cell nucleus via specific signals. The two best-studied nuclear transport processes are mediated either by classical nuclear localization signals or nuclear export signals. There also are shuttling sequences that direct the bidirectional transport of RNA-binding proteins. Two examples are the M9 sequence in heterogeneous nuclear ribonucleoprotein A1 and the heterogeneous nuclear ribonucleoprotein K shuttling domain (KNS) sequence in heterogeneous nuclear ribonucleoprotein K, both of which appear to contribute importantly to the export of mRNA to the cytoplasm. HuR is an RNA-binding protein that can stabilize labile mRNAs containing AU-rich elements in their 3′ untranslated regions and has been shown to shuttle between the nucleus and cytoplasm (18, 19). We have identified in HuR a shuttling sequence that also possess transcription-dependent nuclear localization signal activity. We propose that HuR first may bind AU-rich element-containing mRNAs in the nucleus and then escort them through the nuclear pore, providing protection during and after export to the cytoplasmic compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify genes involved in macrophage development, we used the differential display technique and compared the gene expression profiles for human myeloid HL-60 leukemia cell lines susceptible and resistant to macrophage maturation. We identified a gene coding for a protein kinase, protein kinase X (PRKX), which was expressed in the maturation-susceptible, but not in the resistant, cell line. The expression of the PRKX gene was found to be induced during monocyte, macrophage, and granulocyte maturation of HL-60 cells. We also studied the expression of the PRKX gene in 12 different human tissues and transformed cell lines and found that, among these tissues and cell types, the PRKX gene is expressed only in blood. Among the blood cell lineages, the PRKX gene is specifically expressed in macrophages and granulocytes. Antisense inhibition of PRKX expression blocked terminal development in both the leukemic HL-60 cells and normal peripheral blood monocytes, implying that PRKX is a key mediator of macrophage and granulocyte maturation. Using the HL-60 cell variant deficient in protein kinase C-β (PKC-β) and several stable PKC-β transfectants, we found that PRKX gene expression is under control of PKC-β; hence PRKX is likely to act downstream of this PKC isozyme in the same signal transduction pathway leading to macrophage maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syndecans are transmembrane proteoglycans that place structurally heterogeneous heparan sulfate chains at the cell surface and a highly conserved polypeptide in the cytoplasm. Their versatile heparan sulfate moieties support various processes of molecular recognition, signaling, and trafficking. Here we report the identification of a protein that binds to the cytoplasmic domains of the syndecans in yeast two-hybrid screens, surface plasmon resonance experiments, and ligand-overlay assays. This protein, syntenin, contains a tandem repeat of PDZ domains that reacts with the FYA C-terminal amino acid sequence of the syndecans. Recombinant enhanced green fluorescent protein (eGFP)–syntenin fusion proteins decorate the plasmamembrane and intracellular vesicles, where they colocalize and cosegregate with syndecans. Cells that overexpress eGFP–syntenin show numerous cell surface extensions, suggesting effects of syntenin on cytoskeleton–membrane organization. We propose that syntenin may function as an adaptor that couples syndecans to cytoskeletal proteins or cytosolic downstream signal-effectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, binds directly to epithelial cadherin (E-cadherin). This binding is mediated by the large cytoplasmic loop of PS1 and requires the membrane-proximal cytoplasmic sequence 604–615 of mature E-cadherin. This sequence is also required for E-cadherin binding of protein p120, a known regulator of cadherin-mediated cell adhesion. Using wild-type and PS1 knockout cells, we found that increasing PS1 levels suppresses p120/E-cadherin binding, and increasing p120 levels suppresses PS1/E-cadherin binding. Thus PS1 and p120 bind to and mutually compete for cellular E-cadherin. Furthermore, PS1 stimulates E-cadherin binding to β- and γ-catenin, promotes cytoskeletal association of the cadherin/catenin complexes, and increases Ca2+-dependent cell–cell aggregation. Remarkably, PS1 familial Alzheimer disease mutant ΔE9 increased neither the levels of cadherin/catenin complexes nor cell aggregation, suggesting that this familial Alzheimer disease mutation interferes with cadherin-based cell–cell adhesion. These data identify PS1 as an E-cadherin-binding protein and a regulator of E-cadherin function in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GD25 cells lacking β1 integrins or expressing β1A with mutations of conserved cytoplasmic tyrosines (Y783, Y795) to phenylalanine have poor directed migration to platelet-derived growth factor or lysophosphatidic acid when compared with GD25 cells expressing wild-type β1A. We studied the effects of v-src on these cells. Transformation with v-src caused tyrosine and serine phosphorylation of wild-type β1A but not of Y783/795F doubly mutated β1A. v-src-transformed cells had rounded and/or fusiform morphology and poor assembly of fibronectin matrix. Adhesion to fibronectin or laminin and coupling of focal contacts to actin-containing cytoskeleton were preserved in transformed Y783/795F cells but lost on transformation when β1A was wild type. Transformed Y783/795F cells also retained ability, albeit limited, to migrate across filters, whereas transformed cells with wild-type β1A were unable to transverse filters. Studies of single tyrosine mutants showed that the more important tyrosine for retaining ability to adhere, assemble focal contacts, and migrate is Y783. These results suggest that overactive phosphorylation of cytoplasmic residues of β1A, particularly Y783, accounts in part for the phenotype of v-src-transformed cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that a bacterial signal transduction cascade that couples morphogenesis with cell cycle progression is regulated by dynamic localization of its components. Previous studies have implicated two histidine kinases, DivJ and PleC, and the response regulator, DivK, in the regulation of morphogenesis in the dimorphic bacterium Caulobacter crescentus. Here, we show that the cytoplasmic response regulator, DivK, exhibits a dynamic, cyclical localization that culminates in asymmetric distribution of DivK within the two cell types that are characteristic of the Caulobacter cell cycle; DivK is dispersed throughout the cytoplasm of the progeny swarmer cell and is localized to the pole of the stalked cell. The membrane-bound DivJ and PleC histidine kinases, which are asymmetrically localized at the opposite poles of the predivisional cell, control the temporal and spatial localization of DivK. DivJ mediates DivK targeting to the poles whereas PleC controls its release from one of the poles at times and places that are consistent with the activities and location of DivJ and PleC in the late predivisional cell. Thus, dynamic changes in subcellular location of multiple components of a signal transduction cascade may constitute a novel mode of prokaryotic regulation to generate and maintain cellular asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein–Barr virus encodes integral membrane proteins LMP1 and LMP2A in transformed lymphoblastoid cell lines. We now find that LMP1 associates with the cell cytoskeleton through a tumor necrosis factor receptor-associated factor-interacting domain, most likely mediated by tumor necrosis factor receptor-associated factor 3. LMP1 is palmitoylated, and the transmembrane domains associate with lipid rafts. Mutation of LMP1 cysteine-78 abrogates palmitoylation but does not affect raft association or NF-κB or c-Jun N-terminal kinase activation. LMP2A also associates with rafts and is palmitoylated but does not associate with the cell cytoskeleton. The associations of LMP1 and LMP2A with rafts and of LMP1 with the cell cytoskeleton are likely to effect interactions with cell proteins involved in shape, motility, signal transduction, growth, and survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23°C and then shifted to 5°C. We compared the leaves shifted to 5°C for 10 d and the new leaves developed at 5°C with the control leaves on plants that had been left at 23°C. Leaf development at 5°C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23°C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5°C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5°C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organization of the endoplasmic reticulum (ER) in the cortex of Xenopus oocytes was investigated during maturation and activation using a green fluorescent protein chimera, immunofluorescence, and electron microscopy. Dense clusters of ER developed on the vegetal side (the side opposite the meiotic spindle) during maturation. Small clusters appeared transiently at the time of nuclear envelope breakdown, disappeared at the time of first polar body formation, and then reappeared as larger clusters in mature eggs. The appearance of the large ER clusters was correlated with an increase in releaseability of Ca2+ by IP3. The clusters dispersed during the Ca2+ wave at activation. Possible relationships of ER structure and Ca2+ regulation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

19F nuclear Overhauser effects (NOEs) between fluorine labels on the cytoplasmic domain of rhodopsin solubilized in detergent micelles are reported. Previously, high-resolution solution 19F NMR spectra of fluorine-labeled rhodopsin in detergent micelles were described, demonstrating the applicability of this technique to studies of tertiary structure in the cytoplasmic domain. To quantitate tertiary contacts we have applied a transient one-dimensional difference NOE solution 19F NMR experiment to this system, permitting assessment of proximities between fluorine labels specifically incorporated into different regions of the cytoplasmic face. Three dicysteine substitution mutants (Cys-140–Cys-316, Cys-65–Cys-316, and Cys-139–Cys-251) were labeled by attachment of the trifluoroethylthio group through a disulfide linkage. Each mutant rhodopsin was prepared (8–10 mg) in dodecylmaltoside and analyzed at 20°C by solution 19F NMR. Distinct chemical shifts were observed for all of the rhodopsin 19F labels in the dark. An up-field shift of the Cys-316 resonance in the Cys-65–Cys-316 mutant suggests a close proximity between the two residues. When analyzed for 19F-19F NOEs, a moderate negative enhancement was observed for the Cys-65–Cys-316 pair and a strong negative enhancement was observed for the Cys-139–Cys-251 pair, indicating proximity between these sites. No NOE enhancement was observed for the Cys-140–Cys-316 pair. These NOE effects demonstrate a solution 19F NMR method for analysis of tertiary contacts in high molecular weight proteins, including membrane proteins.