912 resultados para CURVATURE
Resumo:
O presente trabalho teve por objectivo global o estudo e desenvolvimento de sensores baseados em fibra óptica polimérica. O crescimento da tecnologia polimérica nos últimos anos permitiu a introdução deste tipo de fibras ópticas na área das telecomunicações e no desenvolvimento de sensores. As vantagens associadas à metrologia óptica com fibra polimérica têm vindo a atrair as atenções da comunidade científica dado que permitem o desenvolvimento de sistemas de baixo-custo ou custo competitivo face às tecnologias convencionais. Dada a actualidade do tema proposto, descreve-se, numa primeira fase, a tecnologia em fibra óptica polimérica existente no mercado e o estado de arte de sensores em fibra óptica polimérica. Segue-se a descrição de dois tipos de sensores baseados em modulação de intensidade. Projectou-se um sensor extrínseco capaz de avaliar a quantidade de luz dispersa e absorvida por partículas suspensas num líquido. Foi efectuada a caracterização do sensor quanto à concentração de partículas suspensas, tamanho e reflectividade. O sensor foi testado no âmbito da monitorização ambiental, designadamente, na análise de turbidez em amostras de sedimentos recolhidos em áreas ardidas. O sistema desenvolvido foi comparado com um sistema comercial. Um sensor intrínseco, baseado no polimento lateral de fibra óptica polimérica, foi analisado analiticamente. O modelo teórico avalia o sensor em diferentes condições de macroencurvamento e de índice de refracção do meio envolvente. O modelo teórico foi validado positivamente através de resultados experimentais. Foi avaliada a sensibilidade à temperatura e os conhecimentos adquiridos foram aplicados no desenvolvimento de um sistema capaz de monitorizar a cura de diferentes materiais. É ainda apresentada uma técnica para melhorar a sensibilidade do sensor de curvatura através da aplicação de um revestimento na zona sensível. A dependência na curvatura da potência transmitida por uma fibra óptica polida lateralmente serviu de base ao desenvolvimento de uma joelheira e de uma cotoveleira instrumentada, capazes de avaliar quantitativamente o movimento articular. A necessidade de portabilidade levou ao desenvolvimento de um sistema sem fios para aquisição e transmissão de dados. Espera-se que os protótipos desenvolvidos venham a ter um impacto significativo em sistemas futuros aplicados à medicina física e reabilitação.
Resumo:
End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection.
Resumo:
A biological disparity energy model can estimate local depth information by using a population of V1 complex cells. Instead of applying an analytical model which explicitly involves cell parameters like spatial frequency, orientation, binocular phase and position difference, we developed a model which only involves the cells’ responses, such that disparity can be extracted from a population code, using only a set of previously trained cells with random-dot stereograms of uniform disparity. Despite good results in smooth regions, the model needs complementary processing, notably at depth transitions. We therefore introduce a new model to extract disparity at keypoints such as edge junctions, line endings and points with large curvature. Responses of end-stopped cells serve to detect keypoints, and those of simple cells are used to detect orientations of their underlying line and edge structures. Annotated keypoints are then used in the leftright matching process, with a hierarchical, multi-scale tree structure and a saliency map to segregate disparity. By combining both models we can (re)define depth transitions and regions where the disparity energy model is less accurate.
Resumo:
This study aimed to carry out experimental work to determine, for Newtonian and non-Newtonian fluids, the friction factor (fc) with simultaneous heat transfer, at constant wall temperature as boundary condition, in fully developed laminar flow inside a vertical helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w). The non-Newtonian fluids were aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations of 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations of 0.1% and 0.2% (w/w). According to the rheological study done, the polymer solutions had shear-thinning behavior and different values of viscoelasticity. The helical coil used has an internal diameter, curvature ratio, length and pitch, respectively: 0.00483 m, 0.0263, 5.0 m and 11.34 mm. It was concluded that the friction factors, with simultaneous heat transfer, for Newtonian fluids can be calculated using expressions from literature for isothermal flows. The friction factors for CMC and XG solutions are similar to those for Newtonian fluids when the Dean number, based in a generalized Reynolds number, is less than 80. For Dean numbers higher than 80, the friction factors of the CMC solutions are lower those of the XG solutions and of the Newtonian fluids. In this range the friction factors decrease with the increase of the viscometric component of the solution and increase for increasing elastic component. The change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, is in accordance with the study of Ali [4]. There is a change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, which is in according to previous studies. The data also showed that the use of the bulk temperature or of the film temperature to calculate the physical properties of the fluid has a residual effect in the friction factor values.
Resumo:
This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The helical coil used has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m, 0.0263, 5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented.
Resumo:
Using numerical simulations, we compare properties of knotted DNA molecules that are either torsionally relaxed or supercoiled. We observe that DNA supercoiling tightens knotted portions of DNA molecules and accentuates the difference in curvature between knotted and unknotted regions. The increased curvature of knotted regions is expected to make them preferential substrates of type IIA topoisomerases because various earlier experiments have concluded that type IIA DNA topoisomerases preferentially interact with highly curved DNA regions. The supercoiling-induced tightening of DNA knots observed here shows that torsional tension in DNA may serve to expose DNA knots to the unknotting action of type IIA topoisomerases, and thus explains how these topoisomerases could maintain a low knotting equilibrium in vivo, even for long DNA molecules.
Resumo:
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.
Resumo:
The interaction of biological molecules with water is an important determinant of structural properties both in molecular assemblies, and in conformation of individual macromolecules. By observing the effects of manipulating the activity of water (which can be accomplished by limiting its concentration or by adding additional solutes, "osmotic stress"), one can learn something about intrinsic physical properties of biological molecules as well as measure an energetic contribution of closely associated water molecules to overall equilibria in biological reactions. Here two such studies are reported. The first of these examines several species of lysolipid which, while present in relatively low concentrations in biomembranes, have been shown to affect many cellular processes involving membrane-protein or membrane-membrane interactions. Monolayer elastic constants were determined by combining X-ray diffraction and the osmotic stress technique. Spontaneous radii of curvature of lysophosphatidylcholines were determined to be positive and in the range +30A to +70A, while lysophosphatidylethanolamines proved to be essentially flat. Neither lysolipid significantly affected the bending modulus of the monolayer in which it was incorporated. The second study examines the role of water in theprocess of polymerization of actin into filaments. Water activity was manipulated by adding osmolytes and the effect on the equilibrium dissociation constant (measured as the criticalmonomer concentration) was determined. As water activity was decreased, the critical concentration was reduced for Ca-actin but not for Mg-actin, suggesting that 10-12 fewer water molecules are associated with Ca-actin in the polymerized state. Thisunexpectedly small amount of water is discussed in the context of the common structural motif of a nucleotide binding cleft.
Resumo:
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids, with various associated mechanical properties, have been shown to influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the physical effects incurred by gramicidin incorporation were measured. The reverse hexagonal (H^) phase composed of dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin was adding negative curvature to the monolayers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature (Rop*™") of -7. 1 A. The addition of up to 4 mol% gramicidin in mixtures with DOPE did not result in the monolayers becoming stiffer, as indicated by unaltered bending moduli for each composition. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (LJ phase when hydrated, but undergoes a transition into the H^ phase when mixed with gramicidin. The lattice repeat dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the monolayers. At 12 mol% gramicidin in mixtures with DOPC, the apparent radius of intrinsic curvature of gramicidin (Rop*"^) was measured to be -7.4 A. This mixture formed monolayers that were very resistant to bending under osmotic pressure, with a measured bending modulus of 1 15 kT. The measurements made in this study demonstrate that peptides are able to modulate the spontaneous curvature and other mechanical properties of phospholipid assemblies.
Resumo:
The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.
Resumo:
Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.
Resumo:
Purpose: Adolescent idiopathic scoliosis (AIS) is often associated with low bone mineral content and density (BMC, BMD). Bracing, used to manage spine curvature, may interfere with the growth-related BMC accrual, resulting in reduced bone strength into adulthood. The purpose of this study was to assess the effects of brace treatment on BMC in adult women, diagnosed with AIS and braced in early adolescence. Methods: Participants included women with AIS who: (i) underwent brace treatment (AIS-B, n = 15, 25.6 ± 5.8 yrs), (ii) underwent no treatment (AIS, n = 15, 24.0 ± 4.0 yrs), and (iii) a healthy comparison group (CON, n = 19, 23.5 ± 3.8 yrs). BMC and body composition were assessed using dual-energy X-ray absorptiometry. Differences between groups were examined using a oneway ANOVA or ANCOVA, as appropriate. Results: AIS-B underwent brace treatment 27.9 ± 21.6 months, for 18.0 ± 5.4 h/d. Femoral neck BMC was lower (p = 0.06) in AIS-B (4.54 ± 0.10 g) compared with AIS (4.89 ± 0.61 g) and CON (5.07 ± 0.58 g). Controlling for lean body mass, calcium and vitamin D daily intake, and strenuous physical activity, femoral neck BMC was statistically different (p = 0.02) between groups. A similar pattern was observed at other lower extremity sites (p < 0.05), but not in the spine or upper extremities. BMC and BMD did not correlate with duration of brace treatment, duration of daily brace wear, or overall physical activity. Conclusion: Young women with AIS, especially those who were treated with a brace, have significantly lower BMC in their lower limbs compared to women without AIS. However, the lack of a relationship between brace treatment duration during adolescence and BMC during young adulthood, suggests that the brace treatment is not the likely mechanism of the low BMC.
Resumo:
Digital Terrain Models (DTMs) are important in geology and geomorphology, since elevation data contains a lot of information pertaining to geomorphological processes that influence the topography. The first derivative of topography is attitude; the second is curvature. GIS tools were developed for derivation of strike, dip, curvature and curvature orientation from Digital Elevation Models (DEMs). A method for displaying both strike and dip simultaneously as colour-coded visualization (AVA) was implemented. A plug-in for calculating strike and dip via Least Squares Regression was created first using VB.NET. Further research produced a more computationally efficient solution, convolution filtering, which was implemented as Python scripts. These scripts were also used for calculation of curvature and curvature orientation. The application of these tools was demonstrated by performing morphometric studies on datasets from Earth and Mars. The tools show promise, however more work is needed to explore their full potential and possible uses.
Resumo:
Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.
Resumo:
Le degré de rétention de l’arboricolisme dans le répertoire locomoteur des hominines fossiles du Pliocène est toujours matière à débat, les études ayant principalement porté sur la courbure des phalanges et la proportion des membres. Vu la récente découverte de DIK-1-1 (A. afarensis) et de la scapula qui lui est associée, l’étude de cet os d’un point de vue fonctionnel est intéressante, puisqu’il est directement impliqué dans la locomotion de presque tous les hominoïdes. Le but de cette étude est de tenter d’établir un lien entre l’orientation supéro-inférieure (SI) et antéro-postérieure (AP) de la cavité glénoïde de la scapula et les comportements locomoteurs chez les grands singes et l’humain moderne. Des analyses comparatives sur les adultes ont été réalisées pour 1) voir s’il existe des différences dans la morphologie étudiée entre les espèces et 2) voir si ces différences peuvent être expliquées par la taille corporelle. Des analyses ontogéniques ont aussi été réalisées pour voir si un accroissement de la taille corporelle pendant le développement et les changements locomoteurs qui y sont associés correspondent à un changement d’orientation de la cavité glénoïde. Les résultats montrent que les humains ont une cavité glénoïde qui est orientée moins supérieurement que les grands singes, mais que Pongo, bien qu’étant le plus arboricole, n’a pas l’orientation la plus supérieure. Les « knuckle-walkers » (Pan et Gorilla) se distinguent des autres hominoïdes avec une orientation de la surface glénoïde relative à l’épine plus inférieure. La taille corporelle ne semble pas influencer la morphologie étudiée, sauf parfois chez le gorille. Seuls l’humain et les mâles Pongo montrent un changement ontogénique dans l’orientation de la cavité glénoïde relativement à l’épine. Sur la base de ces résultats, l’orientation de la cavité glénoïde semble refléter partiellement la fonction du membre supérieur dans la locomotion, mais des recherches plus poussées sont nécessaires. Mots-Clés : Scapula, cavité glénoïde, grands singes, humains, locomotion, arboricolisme.