926 resultados para CELL STIMULATORY FACTOR
Resumo:
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E-2 (PGE(2)) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen.
Resumo:
201 p. : gráf.
Resumo:
A theoretical model has been developed to investigate the microfluidic transport of the signaling chemicals in the cell coculture chips. Using an epidermal growth factor (EGF)-like growth factor as the sample chemical, the effects of velocities and channel geometry were studied for the continuous-flow microchannel bioreactors. It is found that different perfusion velocities must be applied in the parallel channels to facilitate the communication, i.e., transport of the signaling component, between the coculture channels. Such communication occurs in a unidirectional way because the signaling chemicals can only flow from the high velocity area to the low velocity area. Moreover, the effect of the transport of the signaling component between the coculture channels on the growth of the monolayer cells and the multicellular tumor spheroid (MTS) in the continuous-flow coculture environment were simulated using 3D models. The numerical results demonstrated that the concentration gradients will induce the heterogeneous growth of the cells and the MTSs, which should be taken into account in designing the continuous-flow perfusion bioreactor for the cell coculture research.
Resumo:
In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.
To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.
In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.
Resumo:
The cells of the specialized mating structures of the nematode Caenorhabditis elegans adult male tail develop from sex-specific divisions of postembryonic blast cells. One male-specific blast cell, B, is the precursor to all the cells of the copulatory spicules. Both cell interactions and autonomous fate specification mechanisms are utilized in the B lineage to specify fate.
During development the anterior daughter of B, B.a, generates four distinct pairs of cells. Cell ablation experiments indicate that the cells of each pair respond to positional cues provided by other male-specific blast cells. F and U promote anterior fates, Y.p promotes some posterior fates, and the B.a progeny promote posterior fates. The cells within each pair may also interact.
The lin-3/let-23 signalling pathway, identified for its function in C. elegans hermaphrodite vulval induction, mediates the signal from F and U. Reduction-of-function mutations in lin-3 (EGF-like signal), let-23 (receptor), sem-5 (adaptor), let-60 (ras), or lin-45 (raf) disrupt the fates of the anterior cells, and mimic F and U ablation. In addition, ectopically expressed lin-3 disrupts the fates of the posterior cells, and can promote anterior fates even in the absence of F and U.
A genetic screen of over 9000 mutagenized gametes recovered 22 mutations in 20 loci that disrupt fate specification in male tail lineages. Seven of these mutations may represent new genes that play a role in male tail development.
The first division of the B cell is asymmetric. The gene vab-3 is required for specification of B.a fates, and it may represent a factor whose activity is localized to the B.a cell via the gene lin-17. lin-17 acts both at the first division of the B cell and at specific other cell divisions in the lineage.
Resumo:
Hematopoiesis is a well-established system used to study developmental choices amongst cells with multiple lineage potentials, as well as the transcription factor network interactions that drive these developmental paths. Multipotent progenitors travel from the bone marrow to the thymus where T-cell development is initiated and these early T-cell precursors retain lineage plasticity even after initiating a T-cell program. The development of these early cells is driven by Notch signaling and the combinatorial expression of many transcription factors, several of which are also involved in the development of other cell lineages. The ETS family transcription factor PU.1 is involved in the development of progenitor, myeloid, and lymphoid cells, and can divert progenitor T-cells from the T-lineage to a myeloid lineage. This diversion of early T-cells by PU.1 can be blocked by Notch signaling. The PU.1 and Notch interaction creates a switch wherein PU.1 in the presence of Notch promotes T-cell identity and PU.1 in the absence of Notch signaling promotes a myeloid identity. Here we characterized an early T-cell cell line, Scid.adh.2c2, as a good model system for studying the myeloid vs. lymphoid developmental choice dependent on PU.1 and Notch signaling. We then used the Scid.adh.2c2 system to identify mechanisms mediating PU.1 and Notch signaling interactions during early T-cell development. We show that the mechanism by which Notch signaling is protecting pro-T cells is neither degradation nor modification of the PU.1 protein. Instead we give evidence that Notch signaling is blocking the PU.1-driven inhibition of a key set of T-regulatory genes including Myb, Tcf7, and Gata3. We show that the protection of Gata3 from PU.1-mediated inhibition, by Notch signaling and Myb, is important for retaining a T-lineage identity. We also discuss a PU.1-driven mechanism involving E-protein inhibition that leads to the inhibition of Notch target genes. This is mechanism may be used as a lockdown mechanism in pro-T-cells that have made the decision to divert to the myeloid pathway.
Resumo:
The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-most cell that forms the vulva, P7.p.
The mirror symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing Wnt signals control the division patterns of the VPCs by controlling the localization of SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 and Van Gogh/VANG-1. All three transmembrane proteins control orientation through the localization of the SYS-1.
The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the posterior body wall muscle of the worm as well as the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. These results illustrate the first evidence of the interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity as well as highlight the promiscuous nature of Wnt signaling within C. elegans.
Resumo:
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.
The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
MicroRNA-132 is a physiological regulator of hematopoietic stem cell function and B-cell development
Resumo:
MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.
Resumo:
Background: Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat- shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results: We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5'-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real- time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress- inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion: Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.
Resumo:
Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH) by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2(+/+)) and E2F2 deficient (E2F2(-/-)) mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2(+/+) and E2F2(-/-) mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2(-/-) mice resembles the phenotype of proliferating E2F2(+/+) liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.
Resumo:
172 p.
Resumo:
BACKGROUND: Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Cytoplast factors such as maturation promoting factor are implicated based on their involvement in nuclear envelope breakdown (NEBD) and prema
Resumo:
Generation of homogeneous oligodendrocytes as donor cells is essential for human embryonic stem cell (hESC)-based cell therapy for demylinating diseases. Herein we present a novel method for efficiently obtaining mature oligodendrocytes from hESCs with high purity (79.7 +/- 6.9%), using hepatocyte growth factor (HGF) and G5 supplement(containing insulin, transferrin, selenite, biotin, hydrocortisone, basic fibroblast growth factor and epidermal growth factor) in a four-step method. We induced hESCs into neural progenitors (NP) with HGF (5 ng/ml) and G5 (1 x) supplemented medium in an adherent differentiation system. The purified NPs were amplified in suspension as neurospheres for 1 month, and terminal oligodendrocyte differentiation was then induced by G5 supplement withdrawal and HGF treatment (20 ng/ml). The cells generated displayed typical morphologies of mature oligodendrocytes and expressed oligodendrocyte markers O4 and myelin basic protein (MBP). Our result revealed that HGF significantly enhanced the proliferation of hESC-derived NPs and promoted the differentiation as well as the maturation of oligodendrocytes from NPs. Further studies suggest that HGF/c-Met signaling pathway might play an important role in oligodendrocyte differentiation in our system. Our studies provide a means for generating the clinically relevant cell type and a platform for deciphering the molecular mechanisms that control oligodendrocyte differentiation. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.