994 resultados para Bromatologic composition degradation
Resumo:
This paper presents an intelligent procurement marketplace for finding the best mix of web services to dynamically compose the business process desired by a web service requester. We develop a combinatorial auction approach that leads to an integer programming formulation for the web services composition problem. The model takes into account the Quality of Service (QoS) and Service Level Agreements (SLA) for differentiating among multiple service providers who are capable of fulfilling a functionality. An important feature of the model is interface aware composition.
Resumo:
In this paper we propose the architecture of a SoC fabric onto which applications described in a HLL are synthesized. The fabric is a homogeneous layout of computation, storage and communication resources on silicon. Through a process of composition of resources (as opposed to decomposition of applications), application specific computational structures are defined on the fabric at runtime to realize different modules of the applications in hardware. Applications synthesized on this fabric offers performance comparable to ASICs while retaining the programmability of processing cores. We outline the application synthesis methodology through examples, and compare our results with software implementations on traditional platforms with unbounded resources.
Resumo:
Three groups of poly(mannitol citric dicarboxylate) [p(MCD)] copolyesters were synthesized by catalyst-free melt condensation of mannitol with acids. The resulting copolyesters were designated as poly(mannitol citric succinate) [p(MCSu)], poly(mannitol citric adipate) [p(MCA)], poly(mannitol citric sebacate) [p(MCS)]. The polymers were characterized by FTIR, (1)H NMR, and DSC analysis. The synthesized p(MCD) polymers exhibit glass transition temperatures ranging from 16.5 to 58.58 degrees C. The mechanical, degradation properties, and the drug-releasing characteristics of these polymers were investigated. It was observed that the mechanical properties of the p(MCD) polymers cover a wide range with Young's modulus of the polymer varying from 12.25 to 660 MPa. Hydrolytic degradation of all polymers was investigated by incubating polymer discs in PBS and the hydrolytic degradation of p(MCD) polymers followed the order, p(MCSu) > p(MCA) > p(MCS). This was attributed to the number of -CH(2)(units in the dicarboxylic monomers. The release of model drug compounds from the p(MCD) polymer discs was also studied. POLYM. ENG. SCI., 51:2035-2043, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
The variation of equilibrium oxygen potential with oxygen concentration inYBa 2Cu3O7-δhas been measured in the temperature range of 773 to 1223 K. For temperatures up to 1073 K, the oxygen content of theYBa 2Cu3O7-δsample, held in a stabilized-zirconia crucible, was altered by coulometric titration. The compound was in contact with the electrolyte, permitting direct exchange of oxygen ions. For measurements above 1073 K, the oxide was contained in a magnesia crucible placed inside a closed silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid-state cell based on yttria-stabilized zirconia, which served both as a pump and sensor. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The oxygen pressure over the sample was varied from 10-1 to 105 Pa. The oxygen concentrations of the sample equilibrated with pure oxygen at 1.01 × 105 Pa at different temperatures were determined after quenching in liquid nitrogen by hydrogen reduction at 1223 K. The plot of chemical potential of oxygen as a function of oxygen non-stoichiometry shows an inflexion at δ ∼ 0.375 at 873 K. Data at 773 K indicate tendency for phase separation at lower temperatures. The partial enthalpy and entropy of oxygen derived from the temperature dependence of electromotive force (emf ) exhibit variation with composition. The partial enthalpy for °= 0.3, 0.4, and 0.5 also appears to be temperature dependent. The results are discussed in comparison with the data reported in the literature. An expression for the integral free energy of formation of YBa2Cu3O6.5 is evaluated based on measurements reported in the literature. By integration of the partial Gibbs’ energy of oxygen obtained in this study, the variation of integral property with oxygen concentration is obtained at 873 K.
Resumo:
New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.
Resumo:
Microalgae are the most sought after sources for biofuel production due to their capacity to utilize carbon and synthesize it into high density liquid. Current energy crisis have put microalgae under scanner for economical production of biodiesel. Modifications like physiological stress and genetic variation is done to increase the lipid yield of the microalgae. A study was conducted using a microalgal consortium for a period of 15 days to evaluate the feasibility of algal biomass from laboratory as well as outdoor culture conditions. Native algal strains were isolated from a tropical freshwater lake. Preliminary growth studies indicated the relationship between the nitrates and phosphates to the community structure through the days. The lipid profile done using Gas chromatography – Mass spectrometry, revealed the profile of the algal community. Resource competition led to isolation of algae, aided in the lipid profile of a single alga. However, further studies on the application of the mixed population are required to make this consortium approach economically viable for producing algae biofuels.
Resumo:
InAsxSb1−x alloys show a strong bowing in the energy gap, the energy gap of the alloy can be less than the gap of the two parent compounds. The authors demonstrate that a consequence of this alloying is a systematic degradation in the sharpness of the absorption edge. The alloy disorder induced band-tail (Urbach tail) characteristics are quantitatively studied for InAs0.05Sb0.95.
Resumo:
Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Degradation of dimethoate under UV irradiation using TiO2/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO2 optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.
Resumo:
Impact of disturbance on forest stand density, basal area, dbh class distribution of density and basal area, species richness, species diversity and similarity index was assessed through monitoring six, one-hectare, permanent forest plots after a period of 24 years in tropical moist forests of Uttara Kannada district, Western Ghats, India. It was observed that all sites lost trees due to removal by people and mortality. Loss of trees was more in sites that are easily accessible and closer to human habitation. In spite of a decrease in tree density, an increase in basal area was observed in some forest plots, which could be on account of stimulatory growth of surviving trees. Decrease in basal area in other sites indicates greater human pressure and overexploitation of trees. Preponderance of lower girth class trees, and a unimodal reverse `J-shaped' curve of density distribution as observed in majority of the sites in the benchmark year, was indicative of regenerating status of these forests. The decrease in number of species in all forest sites was due to indiscriminate removal of trees by people, without sparing species with only a few individuals, and also due to mortality of trees of rare species. Higher species richness and diversity in the lowest dbh class in most of the sites in the benchmark year is indicative of the existence of favorable conditions for sylvigenesis. The decrease in the similarity index suggests extirpation of species, favoring invasion and colonization by secondary species. To minimize human pressure on forests and to facilitate regeneration and growth, proper management planning and conservation measures are needed.