1000 resultados para Brain Waves
Resumo:
Vitamin A is necessary for normal embryonic development, but its role in the adult brain is poorly understood. Vitamin A derivatives, retinoids, are involved in a complex signaling pathway that regulates gene expression and, in the central nervous system, controls neuronal differentiation and neural tube patterning. Although a major functional implication of retinoic signaling has been repeatedly suggested in synaptic plasticity, learning and memory, sleep, schizophrenia, depression, Parkinson disease, and Alzheimer disease, the targets and the underlying mechanisms in the adult brain remain elusive.
Resumo:
The authors observed a high rate of suicide (6/140 patients, 4.3%) in a large cohort of patients with movement disorders treated with deep brain stimulation (DBS). Apparent risk factors included a previous history of severe depression and multiple successive DBS surgeries, whereas there was no relationship with the underlying condition, DBS target, electrical parameters, or modifications of treatment. Paradoxically, all patients experienced an excellent motor outcome following the procedure. The authors propose that patients at high risk for suicide should be excluded from DBS surgery.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
The groundbreaking and prophetic rhetoric of neuroscience has recently highlighted the fetal brain as the most promising organ for understanding why transsexuals feel "trapped in the wrong body", and for predicting whether children born with "ambiguous" genitalia will grow up to feel like a man or a woman.This article proposes a recent history of the cerebralization of intersexuality and of transsexuality as atypical neurodevelopmental conditions. It examines the ways in which the organizational theory of brain sex differentiation developed in the late 1950s in behavioral neuroendocrinology has gained increased prominence in and through controversies over best practice issues in the case management of intersex newborns, and the etiology of transsexuality.It focuses on the American context and on the leading warrior in this battle: Milton Diamond, now a most prominent figure in professional debates about the clinical management of intersexuality, and the intersex person's best friend. Persons with an intersexed or transsexual condition consider, not their gonads, but their brains, their core sense of self, as the primary determinant of sex. (Diamond and Beh 2005, 6-7, note 1)
Resumo:
La masse considérable de travaux publiés dans le domaine de la neuroimagerie fonctionnelle concernant les fonctions ou modalités du langage (compréhension et expression de la parole, lecture) ou les différents processus linguistiques qui les sous-tendent (sémantique, phonologie, syntaxe) permet de dégager de grandes tendances en termes de substrats anatomiques. Si les « fondamentaux » issus des origines aphasiologiques du domaine n'ont pas été bouleversés, certaines spécificités non explorées par l'approche lésionnelle sont identifiables. Les méta-analyses, en regroupant les résultats de la littérature, nous procurent aujourd'hui une vision globale des substrats cérébraux du langage. Cependant la variabilité inter-individuelle reste importante en raison de multiples facteurs dont certains sont mal identifiés ; cartographier exhaustivement les fonctions du langage à l'échelle individuelle reste une gageure. La quête des images du langage est sans doute aussi inachevable que celle de l'étude du langage lui-même.
Resumo:
Cutting edge emergency services now allow many Iowans to survive a traumatic brain injury (TBI) that would have caused death just a decade ago. The discharge planners at medical centers struggle with dramatically shorter acute inpatient stays, increased caseloads, and over 2000 brain injury admissions each year. Historically, following discharge from the hospital, Iowans with brain injury and their families have been left with little understanding of brain injury, its long-term effects, or where to go for services and supports.
Resumo:
Report produced by Iowa Public Health, Divsion of Brain Injury.
Resumo:
Under Iowa law, hospitals treating persons with a brain or spinal cord injury which results in a hospital admission, patient transfer, or death must report that injury to the Central Registry for Brain and Spinal Cord Injuries of the Iowa Department of Public Health.
Resumo:
While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.
Resumo:
We propose a method for brain atlas deformation inpresence of large space-occupying tumors, based on an apriori model of lesion growth that assumes radialexpansion of the lesion from its starting point. First,an affine registration brings the atlas and the patientinto global correspondence. Then, the seeding of asynthetic tumor into the brain atlas provides a templatefor the lesion. Finally, the seeded atlas is deformed,combining a method derived from optical flow principlesand a model of lesion growth (MLG). Results show that themethod can be applied to the automatic segmentation ofstructures and substructures in brains with grossdeformation, with important medical applications inneurosurgery, radiosurgery and radiotherapy.
Resumo:
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.
Resumo:
Background: Evidence of a role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of eating disorders (ED) has been provided by association studies and by murine models. BDNF plasma levels have been found altered in ED and in psychiatric disorders that show comorbidity with ED. Aims: Since the role of BDNF levels in ED-related psychopathological symptoms has not been tested, we investigatedthe correlation of BDNF plasma levels with the Symptom Checklist 90 Revised (SCL-90R) questionnaire in a total of 78 ED patients. Methods: BDNF levels, measured bythe enzyme-linked immunoassay system, and SCL-90R questionnaire, were assessed in a total of 78 ED patients. The relationship between BDNF levels and SCL-90R scales was calculated using a general linear model. Results: BDNF plasma levels correlated with the Global Severity Index and the Positive Symptom Distress Index global scales and five of the nine subscales in the anorexia nervosa patients. BDNF plasma levels were able to explain, in the case of the Psychoticism subscale, up to 17% of the variability (p = 0.006). Conclusion: Our data suggest that BDNF levels could be involved in the severity of the disease through the modulation of psychopathological traits that are associated with the ED phenotype.
Resumo:
Murine models and association studies in eating disorder (ED) patients have shown a role for the brain-derived neurotrophic factor (BDNF) in eating behavior. Some studies have shown association of BDNF -270C/T single-nucleotide polymorphism (SNP) with bulimia nervosa (BN), while BDNF Val66Met variant has been shown to be associated with both BN and anorexia nervosa (AN). To further test the role of this neurotrophin in humans, we screened 36 SNPs in the BDNF gene and tested for their association with ED and plasma BDNF levels as a quantitative trait. We performed a family-based association study in 106 ED nuclear families and analyzed BDNF blood levels in 110 ED patients and in 50 sib pairs discordant for ED. The rs7124442T/rs11030102C/rs11030119G haplotype was found associated with high BDNF levels (mean BDNF TCG haplotype carriers = 43.6 ng/ml vs. mean others 23.0 ng/ml, P = 0.016) and BN (Z = 2.64; P recessive = 0.008), and the rs7934165A/270T haplotype was associated with AN (Z =-2.64; P additive = 0.008). The comparison of BDNF levels in 50 ED discordant sib pairs showed elevated plasma BDNF levels for the ED group (mean controls = 41.0 vs. mean ED = 52.7; P = 0.004). Our data strongly suggest that altered BDNF levels modulated by BDNF gene variability are associated with the susceptibility to ED, providing physiological evidence that BDNF plays a role in the development of AN and BN, and strongly arguing for its involvement in eating behavior and body weight regulation.