863 resultados para Bottom-up learning
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.
Resumo:
Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users’ equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy.
Resumo:
In 2013 the European Commission launched its new green infrastructure strategy to make another attempt to stop and possibly reverse the loss of biodiversity until 2020, by connecting habitats in the wider landscape. This means that conservation would go beyond current practices to include landscapes that are dominated by conventional agriculture, where biodiversity conservation plays a minor role at best. The green infrastructure strategy aims at bottom-up rather than top-down implementation, and suggests including local and regional stakeholders. Therefore, it is important to know which stakeholders influence land-use decisions concerning green infrastructure at the local and regional level. The research presented in this paper served to select stakeholders in preparation for a participatory scenario development process to analyze consequences of different implementation options of the European green infrastructure strategy. We used a mix of qualitative and quantitative social network analysis (SNA) methods to combine actors’ attributes, especially concerning their perceived influence, with structural and relational measures. Further, our analysis provides information on institutional backgrounds and governance settings for green infrastructure and agricultural policy. The investigation started with key informant interviews at the regional level in administrative units responsible for relevant policies and procedures such as regional planners, representatives of federal ministries, and continued at the local level with farmers and other members of the community. The analysis revealed the importance of information flows and regulations but also of social pressure, considerably influencing biodiversity governance with respect to green infrastructure and biodiversity.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Applying a synthetic approach to the resilience of Finnish reindeer herding as a changing livelihood
Resumo:
Reindeer herding is an emblematic livelihood for Northern Finland, culturally important for local people and valuable in tourism marketing. We examine the livelihood resilience of Finnish reindeer herding by narrowing the focus of general resilience on social-ecological systems (SESs) to a specific livelihood while also acknowledging wider contexts in which reindeer herding is embedded. The questions for specified resilience can be combined with the applied DPSIR approach (Drivers; Pressures: resilience to what; State: resilience of what; Impacts: resilience for whom; Responses: resilience by whom and how). This paper is based on a synthesis of the authors’ extensive anthropological fieldwork on reindeer herding and other land uses in Northern Finland. Our objective is to synthesize various opportunities and challenges that underpin the resilience of reindeer herding as a viable livelihood. The DPSIR approach, applied here as a three step procedure, helps focus the analysis on different components of SES and their dynamic interactions. First, various land use-related DPSIR factors and their relations (synergies and trade-offs) to reindeer herding are mapped. Second, detailed DPSIR factors underpinning the resilience of reindeer herding are identified. Third, examples of interrelations between DPSIR factors are explored, revealing the key dynamics between Pressures, State, Impacts, and Responses related to the livelihood resilience of reindeer herding. In the Discussion section, we recommend that future applications of the DPSIR approach in examining livelihood resilience should (1) address cumulative pressures, (2) consider the state dimension as more tuned toward the social side of SES, (3) assess both the negative and positive impacts of environmental change on the examined livelihood by a combination of science led top-down and participatory bottom-up approaches, and (4) examine and propose governance solutions as well as local adaptations by reindeer herders as equally relevant responses to enhance livelihood resilience.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
SILVA, Alexandre Reche e. Rudimentos de uma inspeção topográfica aplicados à Passacaglia para orquestra, opus 1, de Anton Webern. Ictus - Periódico do PPGMUS/UFBA, Salvador, v. 7, p.189-208, 2010
Resumo:
Graphene has emerged as an extraordinary material with its capability to accommodate an array of remarkable electronic, mechanical and chemical properties. Extra-large surface-to-volume ratio renders graphene a highly flexible morphology, giving rise to intriguing observations such as ripples, wrinkles and folds as well as the potential to transform into other novel carbon nanostructures. Ultra-thin, mechanically tough, electrically conductive graphene films promise to enable a wealth of possible applications ranging from hydrogen storage scaffolds, electronic transistors, to bottom-up material designs. Enthusiasm for graphene-based applications aside, there are still significant challenges to their realization, largely due to the difficulty of precisely controlling the graphene properties. Controlling the graphene morphology over large areas is crucial in enabling future graphene-based applications and material design. This dissertation aims to shed lights on potential mechanisms to actively manipulate the graphene morphology and properties and therefore enable the material design principle that delivers desirable mechanical and electronic functionalities of graphene and its derivatives.
Resumo:
Background. Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. Aim. The purpose of this article is to highlight the significant new knowledges regarding this matter. Emerging acquisitions. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. Future research activities. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.
Resumo:
Even though the use of recommender systems is already widely spread in several application areas, there is still a lack of studies for accessibility research field. One of these attempts to use recommender system benefits for accessibility needs is Vulcanus. The Vulcanus recommender system uses similarity analysis to compare user’s trails. In this way, it is possible to take advantage of the user’s past behavior and distribute personalized content and services. The Vulcanus combined concepts from ubiquitous computing, such as user profiles, context awareness, trails management, and similarity analysis. It uses two different approaches for trails similarity analysis: resources patterns and categories patterns. In this work we performed an asymptotic analysis, identifying Vulcanus’ algorithm complexity. Furthermore we also propose improvements achieved by dynamic programming technique, so the ordinary case is improved by using a bottom-up approach. With that approach, many unnecessary comparisons can be skipped and now Vulcanus 2.0 is presented with improvements in its average case scenario.
Resumo:
The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane <111>B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the <110> direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +\- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
Resumo:
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.