746 resultados para Bcl-X1
Resumo:
Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.
Resumo:
Under inflammatory conditions, neutrophil apoptosis is delayed due to survival-factor exposure, a mechanism that prevents the resolution of inflammation. One important proinflammatory cytokine involved in the regulation of neutrophil survival/activation is granulocyte-macrophage colony-stimulating factor (GM-CSF). Although GM-CSF mediates antiapoptotic effects in neutrophils, it does not prevent apoptosis, and the survival effect is both time dependent and limited. Here, we identified the proapoptotic Bcl-2 family member Bim as an important lifespan limiting molecule in neutrophils, particularly under conditions of survival factor exposure. Strikingly, GM-CSF induced Bim expression in both human and mouse neutrophils that was blocked by pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K). Increased Bim expression was also seen in human immature bone marrow neutrophils as well as in blood neutrophils from septic shock patients; both cell populations are known to be exposed to GM-CSF under in vivo conditions. The functional role of Bim was investigated using Bim-deficient mouse neutrophils in the presence and absence of the survival cytokines interleukin (IL)-3 and GM-CSF. Lack of Bim expression resulted in a much higher efficacy of the survival cytokines to block neutrophil apoptosis. Taken together, these data demonstrate a functional role for Bim in the regulation of neutrophil apoptosis and suggest that GM-CSF and other neutrophil hematopoietins initiate a proapoptotic counterregulation that involves upregulation of Bim.
Resumo:
Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.
Resumo:
The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok−/−Bak−/− and Bok−/−Bax−/− mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok−/−Bax−/− females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.
Resumo:
Background: Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. Methods: A method is described to massively expand bone marrow–derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. Results: IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). Conclusion: A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
The two major subtypes of diffuse large B-cell lymphoma (DLBCL) (germinal centre B-cell - like (GCB-DLBCL) and activated B-cell - like (ABC-DLBCL)) are defined by means of gene expression profiling (GEP). Patients with GCB-DLBCL survive longer with the current standard regimen R-CHOP than patients with ABC-DLBCL. As GEP is not part of the current routine diagnostic work-up, efforts have been made to find a substitute than involves immunohistochemistry (IHC). Various algorithms achieved this with 80-90% accuracy. However, conflicting results on the appropriateness of IHC have been reported. Because it is likely that the molecular subtypes will play a role in future clinical practice, we assessed the determination of the molecular DLBCL subtypes by means of IHC at our University Hospital, and some aspects of this determination elsewhere in Switzerland. The most frequently used Hans algorithm includes three antibodies (against CD10, bcl-6 and MUM1). From records of the routine diagnostic work-up, we identified 51 of 172 (29.7%) newly diagnosed and treated DLBCL cases from 2005 until 2010 with an assigned DLBCL subtype. DLBCL subtype information was expanded by means of tissue microarray analysis. The outcome for patients with the GCB subtype was significantly better compared with those with the non-GC subtype, independent of the age-adjusted International Prognostic Index. We found a lack of standardisation in the subtype determination by means of IHC in Switzerland and significant problems of reproducibility. We conclude that the Hans algorithm performs well in our hands and that awareness of this important matter is increasing. However, outside clinical trials, vigorous efforts to standardise IHC determination are needed as DLBCL subtype-specific therapies emerge.
Resumo:
It has previously been published that interferon-α (type I IFN) improves clinical symptoms of asthma patients. Since human basophils are major inflammatory cells in maintaining chronic allergic asthma we investigate whether type I IFN affect human blood basophils. Furthermore, previous studies have shown that spontaneous apoptosis of human basophils is slow due to constitutive expression of anti-apoptotic BCL-2 family members. In addition, IL-3 exceptionally promotes survival of basophils by enhancing constitutive expression of BCL-2 family members and by inducing de-novo expression of Pim-1 kinase. Thus, we also assessed whether type I IFN might overcome IL-3-induced survival of human basophils. Our data show that type I IFN enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or type II IFN treated cells. Furthermore, we demonstrate that both type I IFN and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. Analyses of signaling pathways reveal that type I IFN promote prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of type I IFN is abolished. On the other hand, type I IFN do not reduce IL-3-induced de novo expression of Pim-1 and BCL-2. This is in line with our observation that IL-3-induced survival is dominant over type I IFN-enhanced apoptosis. In addition, phosphorylation of p38 MAPK in type I IFN treated cells is comparable to non-treated cells. Particularly however, inhibition of this p-p38 activity abrogates apoptosis as well. We conclude that type I IFN-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38 MAPK pathways. Our study identifies a so far unknown effect of type I IFN and may explain the improved clinical symptoms of asthma patients treated with type I IFN.
Resumo:
Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.
Resumo:
Signal transduction and activator of transcription 3 (Stat3) is activated by cytokines and growth factors in many cancers. Persistent activation of Stat3 plays important role in cell growth, survival, and transformation through regulating its targeted genes. Previously, we found that mice with a deletion of the G protein-coupled receptor, family C, group 5, member a (Gprc5a) gene develop lung tumors indicating that Gprc5a is a tumor suppressor. In the present study, we examined he mechanism of Gprc5a-mediated tumor suppression. We found that epithelial cells from Gprc5a knockout mouse lung (Gprc5a-/- cells) survive better in vitro in medium deprived of exogenous growth factors and form more colonies in semi-solid medium than their counterparts from wildtype mice (Gprc5a+/+ cells). The phosphorylation of tyrosine 705 on Stat3 and the expression of Stat3-regulated anti-apoptotic genes Bcl-XL, Cryab, Hapa1a, and Mcl1 were higher in the Gprc5a-/- than in Gprc5a+/+ cells. In addition, their responses to Lif were different; Stat3 activation was persistent by Lif treatment in the Gprc5a-/- cells, but was transient in the Gprc5a+/+ cells. The persistent activation of Stat3 by Lif in Gprc5a-/- cells is due to a decreased level of Socs3 protein, a negative inhibitor of the Lif-Stat3 signaling. Restoration of Socs3 inhibited the persistent Stat3 activation in Gprc5a-/- cells. Lung adenocarcinoma cells isolated from Gprc5a-/- mice also exhibited autocrine Lif-mediated Stat3 activation. Treatment of Gprc5a-/- cells isolated from normal and tumor tissue with AG490, a Stat3 signaling inhibitor, or with dominant negative Stat3(Y705F) increased starvation-induced apoptosis and inhibited anchorage-independent growth. These results suggest that persistent Stat3 activation increased the survival and transformation of Gprc5a-/- lung cells. Thus, the tumor suppressive effects of Gprc5a are mediated, at least in part, by inhibition of Stat3 signaling through regulating the stability of the Socs3 protein.
Resumo:
Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^
Resumo:
Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^
Resumo:
The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^
Resumo:
Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^
Resumo:
The goal of this study was to investigate the cellular and molecular mechanisms by which glutathione (GSH) is involved in the process of apoptosis induced by cisplatin [cis-diamminedichloroplatinum(II), cis-DDP] in the HL60 human promyelocytic leukemia cell line. The data show that during the onset or induction of apoptosis, GSH levels in cisplatin-treated cells increased 50% compared to control cells. The increase in intracellular GSH was associated with enhanced expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme that catalyzes the rate- limiting step in the biosynthesis of glutathione. After depletion of intracellular GSH with D,L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of γ-GCS, biochemical and morphological analysis revealed that the mechanism of cell death had switched from apoptosis to necrosis. In contrast, when intracellular GSH was elevated by exposure of cells to a GSH-ethyl-ester and then treatment with cisplatin, no change in the induction and kinetics of apoptosis were observed. However, when cells were exposed to cisplatin before intracellular GSH levels were increased, apoptosis was observed to occur 6 hours earlier compared to cells without GSH elevation. To further examine the molecular aspects of these effects of GSH on the apoptotic process, changes in the expression of bcl-2 and bax, were investigated in cells with depleted and elevated GSH. Using reverse transcription polymerase chain reaction, no significant change in the expression of bcl-2 gene transcripts was observed in cells in either the GSH depleted or elevated state; however, a 75% reduction in GSH resulted in a 40% decrease in the expression of bax gene transcripts. In contrast, a 6-fold increase in GSH increased the expression of bax by 3-fold relative to controls. Similar results were obtained for bax gene expression and protein synthesis by northern analysis and immunoprecipitation, respectively. These results suggest that GSH serves a dual role in the apoptotic process. The first role which is indirect, involves the protection of the cell from extensive damage following exposure to a specific toxicant so as to prevent death by necrosis, possibly by interacting with the DNA damaging agent and/or its active metabolites. The second role involves a direct involvement of GSH in the apoptotic process that includes upregulation of bax expression. ^