988 resultados para Bacterial communities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A few bacterial species are known to produce and excrete hydrogen cyanide (HCN), a potent inhibitor of cytochrome c oxidase and several other metalloenzymes. In the producer strains, HCN does not appear to have a role in primary metabolism and is generally considered a secondary metabolite. HCN synthase of proteobacteria (especially fluorescent pseudomonads) is a membrane-bound flavoenzyme that oxidizes glycine, producing HCN and CO2. The hcnABC structural genes of Pseudomonas fluorescens and P. aeruginosa have sequence similarities with genes encoding various amino acid dehydrogenases/oxidases, in particular with nopaline oxidase of Agrobacterium tumefaciens. Induction of the hcn genes of P. fluorescens by oxygen limitation requires the FNR-like transcriptional regulator ANR, an ANR recognition sequence in the -40 region of the hcn promoter, and nonlimiting amounts of iron. In addition, expression of the hcn genes depends on a regulatory cascade initiated by the GacS/GacA (global control) two-component system. This regulation, which is typical of secondary metabolism, manifests itself during the transition from exponential to stationary growth phase. Cyanide produced by P. fluorescens strain CHA0 has an ecological role in that this metabolite accounts for part of the biocontrol capacity of strain CHA0, which suppresses fungal diseases on plant roots. Cyanide can also be a ligand of hydrogenases in some anaerobic bacteria that have not been described as cyanogenic. However, in this case, as well as in other situations, the physiological function of cyanide is unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To improve our understanding of how biological communities assemble, we investigated changes in bumblebee communities in space along an elevation gradient. We assessed how much deterministic abiotic and biotic factors shape community assembly. We focused on proboscis length (influencing the species' dietary regime) and phylogenetic relatedness to investigate if competition and environmental filtering occur in more and less productive climates, respectively. Location Western Swiss Alps. Methods We recorded bumblebee species in 149 plots along a 1800-m wide elevation gradient. We contrasted two major clades of bumblebees, a short-tongued and a long-tongued clade. We calculated the phylogenetic and proboscis-length diversity of the bumblebee communities and compared these observed data with a random distribution to detect clustering likely to be caused by environmental filtering or overdispersion likely to be caused by competition. We compared the prevalence of clustered and overdispersed communities along the gradients of plant species richness (biotic) and temperature (abiotic). Results Under colder conditions, where plant species richness is lower and floral resources are scarcer, the clade with shorter proboscides prevails over the clade with longer proboscides, and communities are functionally and phylogenetic clustered. Under warmer conditions, we found phylogenetic but not functional overdispersion in communities. Main conclusions We show for the first time a strong correlation between phylogenetic relatedness, proboscis length and species distribution along temperature and plant richness gradients shaping bumblebee communities. The low temperatures and low levels of plant species richness limit the dispersal of the species from the long-tongued clade, which have more specialized diets, into high-elevation areas. Competition under warmer conditions may produce communities composed of less closely related species that share distinct ecological preferences. Our empirical results corroborate theoretical expectation as well as experiments on the prevalence of deterministic processes in the most severe and most productive parts of environmental gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies. METHODS AND RESULTS: Consecutive patients in whom cardiac pacemakers and implantable cardioverter/defibrillators were removed at our institution between October 2007 and December 2008 were prospectively included. Devices (generator and/or leads) were aseptically removed and sonicated, and the resulting sonication fluid was cultured. In parallel, conventional swabs of the generator pouch were performed. A total of 121 removed devices (68 pacemakers, 53 implantable cardioverter/defibrillators) were included. The reasons for removal were insufficient battery charge (n=102), device upgrading (n=9), device dysfunction (n=4), or infection (n=6). In 115 episodes (95%) without clinical evidence of infection, 44 (38%) grew bacteria in sonication fluid, including Propionibacterium acnes (n=27), coagulase-negative staphylococci (n=11), Gram-positive anaerobe cocci (n=3), Gram-positive anaerobe rods (n=1), Gram-negative rods (n=1), and mixed bacteria (n=1). In 21 of 44 sonication-positive episodes, bacterial counts were significant (>or=10 colony-forming units/mL of sonication fluid). In 26 sterilized controls, sonication cultures remained negative in 25 cases (96%). In 112 cases without clinical infection, conventional swab cultures were performed: 30 cultures (27%) were positive, and 18 (60%) were concordant with sonication fluid cultures. Six devices and leads were removed because of infection, growing Staphylococcus aureus, Streptococcus mitis, and coagulase-negative staphylococci in 6 sonication fluid cultures and 4 conventional swab cultures. CONCLUSIONS: Bacteria can colonize cardiac electrophysiological devices without clinical signs of infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

George O. Hurley is the author and Ben J. Shambaugh is the editor of this document, which is also called Bulletin of Information Series No.10 published by the State Historical Society of Iowa. The purpose of this bulletin is to offer a practical discussion of some of the problems involved in the writing, organization and production of a community pageant which is defined as a community institution, such as churches, schools, chambers of commerce, woman's clubs, lodges and other organizations may us pageantry to advantage and profit. A bibliography is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the latest years the importance of high resolution analysis of the microbial cell surface has been increasingly recognized. Indeed, in order to better understand bacterial physiology and achieve rapid diagnostic and treatment techniques, a thorough investigation of the surface modifications induced on bacteria by different environmental conditions or drugs is essential. Several instruments are nowadays available to observe at high resolution specific properties of microscopic samples. Among these, AFM can routinely study single cells in physiological conditions, measuring the mechanical properties of their membrane at a nanometric scale (force volume). Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work we exploit such technique to characterize bacterial systems. We have performed an analysis of the mechanical properties of bacteria (Escherichia coli) exposed to different conditions. Such measurements were performed on living bacteria, by changing in real-time the liquid environment: standard phosphate buffered saline, antibiotic (ampicillin) in PBS and growth medium. In particular we have focused on the determination of the membrane stiffness modifications induced by these solutions, in particular between stationary and replicating phases and what is the effect of the antibiotic on the bacterial structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne microbial products have been reported to promote immune responses that suppress asthma, yet how these beneficial effects take place remains controversial and poorly understood. We have found that pulmonary exposure with the bacterium Escherichia coli leads to a suppression of allergic airway inflammation, characterized by reduced airway-hyperresponsiveness, eosinophilia and cytokine production by T cells in the lung. This immune modulation was neither mediated by the induction of a Th1 response nor regulatory T cells; was dependent on TLR-4 but did not involve TLR-desensitization. Dendritic cell migration to the draining lymph nodes and subsequent activation of T cells was unaffected by prior exposure to E.coli indicating that the immunomodulation was limited to the lung environment. In non-treated control mice ovalbumin was primarily presented by airway CD11b+ CD11c+ DCs expressing high levels of MHC class II molecules whilst the DCs in E.coli-treated mice displayed a less activated phenotype and had impaired antigen presentation capacity. Consequently, in situ Th2 cytokine production by ovalbuminspecific effector T cells recruited to the airways was significantly reduced. The suppression of airways hyper responsiveness was mediated through the recruitment of IL-17-producing gd-T cells; however, the suppression of dendritic cells and T cells was mediated through a distinct mechanism that could not be overcome by the local administration of activated dendritic cells, or by the in vivo administration of TNF-alpha. Taken together, these data reveal a novel multi-component immunoregulatory pathway that acts to protect the airways from allergic inflammation.