797 resultados para BROWN ADIPOSE-TISSUE
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactivemolecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGF beta 1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Brazil has the fourth largest horse herd in the world, this is due the recognition and appreciation that the different equestrian games are having within the country. Injuries of the tendon, especially in the digital flexor tendon, are the main cause of athletic life reduction among horses. The treatment of tendinitis in horses seeks full recovery of the damage tissue reestablishing the function previously lost, however conventional treatments have proven to be ineffective when considered the quality of the scar tissue and the rate of recurrence. Due to this, the use of adult stem cells to the treatment of musculoskeletal injuries of horses has been studied for some time. This method of treatment consists of aspiration of bone marrow or removal of subcutaneous fat tissue and implantation of these cells in the injured tissue. After obtaining the bone marrow the implantation can be performed with total bone marrow, with the mononuclear fraction of MSC or with cells cultured in vitro. From the fat tissue is used the stromal vascular fraction obtained by collagenase digestion, followed or not by cell culture. According to some studies, cell therapy with material obtained from bone marrow or adipose tissue has shown to be viable, given that these materials are abundant in repair components such as mesenchymal stem cells (MSC), growth factors and other components of the collagen matrix. Several studies using both types of cells have shown great potential and promising clinical results. However, knowledge of the biology and characterization of these cells remain largely unknown, and therefore is needed great care and caution when using stem cells for the treatment of musculoskeletal disorders in horses
Resumo:
Mammary cancer is a multifactorial disease that is believed to be caused by genetic and environmental factors. Among the environmental factors, pyrethroids appear to be able to participate in carcinogenesis through several mechanisms, and have been shown to be associated to mammary tumors in canines. In order to investigate the possible rule of pyrethroid on DNA lesion in mammary tissue we compare the comet assay results between mammary tumor bearing dogs with and without pyrethroid associated to the peri mammary adipose tissue or the tumor itself. The pyrethroids presence was assessed by High Performance Liquid Chromatography (HPLC) and the DNA damage was assessed by the comet assay as previously described. Despite of correlation between DNA damage and tumor histologic aggressiveness, association between the severity of DNA damage and different types of mammary carcinoma was not found. Although pyrethroids were present in 22% of tumors and peritumoral adipose tissue, no difference in the degree DNA damage between the exposed and non exposed cells to pyrethroids were found. As future perspectives for this work, our group will evaluate the relationship of pyrethroids presence in tumors with its angiogenic potential. Angiogenesis evaluation will be based on presence of vascular endothelial growth factor (VEGF) in the tumor cells, and microvessel counts
Resumo:
Mesenchymal stem cells (MSCs) are adult multipotent cells with fibroblastoid morphology and adherent to plastic. Furthermore, they can be obtained from different sources. Besides bone marrow, these cells are taken from umbilical cord blood, umbilical vein, saphenous vein, peripheral blood, arteries, liver and fetal pancreas, placenta, dental pulp and adipose tissue. MSCs derived from adipose tissue are important because of the abundant number of cells that can be obtained from this tissue, easy access and little discomfort to the patient. This study compared two techniques for obtaining MSCs from adipose tissue: mechanical dissociation (MD) and enzymatic digestion (ED). We also analyzed the inter-species cross-reactions using commercial monoclonal antibodies directed against surface antigens of stem cells from different species: mouse, horse, rabbit, monkey and human. We found that MD technique is favorable in relation to ED within 15 days of culture, and ED is more efficient in the first days of culture. The data also showed that MD causes less damage to cellular DNA. About inter-species cross-reactions, the monoclonal antibody A69 directed against stem cells from rabbits, which can be used in veterinary medicine, particularly in research involving horses
Resumo:
The cancer anorexia-cachexia syndrome is the most common paraneoplastic syndrome in Veterinary Medicine. It is characterized by severe loss of muscle mass and adipose tissue resulting in severe unintentional weight loss, anemia, fatigue, negative nitrogen balance, immune dysfuntion and other metabolic disturbances. The SAC is not only a result of inadequate intake of nutrients. The tumor requires large amounts of nutrients to allow growth and causes changes in pacient metabolism to get this energy. Recent studies suggest that the metabolic changes by cancer can be measured by hormones and cytokines produced or by the patient or the tumor, but this not completely understood. Animals with SAC have lower survival time, the greater chance of complications during treatment and lower quality of life. With the increase in the number of cancer cases in domestic animals and longer lifespan after diagnosis of malignant disease through the use of antineoplastics drugs, diagnosis and treatment of cancer anorexia-cachexia syndrome has shown great importance in that patients may have higher survival then better quality of life. This paper aims to provide information about this complex and multifunctional syndrome and its possible treatments
Resumo:
Muscular dystrophy refers to a group of more than 30 genetical disorders characterized by progressive weakness and degeneration of the skeletal muscle. No effective therapy is available at present. Recent studies have reported that the transplantation of stem cells can offer an important potential therapy for genetic diseases. Adult bone marrow mesenchymal stem cells have been identified as a nonhematopoietic stem cell population capable of self-renewal with the ability to differentiate into many cell lineages, including bone, fat, cartilage and connective tissue. Because of their similarity with muscle progenitor cells, when they are injected in affected individuals, they are able to migrate into areas of skeletal muscle degeneration and participate in the regeneration process. The adipose tissue represents an alternative source of MSCs that, as the MSCs derived from bone marrow, are capable of in vitro differentiation into osteogenic, adipogenic, myogenic and chondrogenic lineages. The objective of this project is to investigate the “in vitro” myogenic potential of mesenchymal stem cells derived from murine bone marrow and adipose tissue. Four experimental groups were analyzed: mice from lineages Lama2dy-2J/J and C57black and, C2C12 lineage cells and transformed C2C12 expressing the eGFP protein. MSCs cultures were obtained by flushing the bone marrow femurs and tibials with α-MEM or by the subcutaneous and inguinal fat from the mice. Their characterization was done by flow cytometry and in vitro differentiation. Muscle differentiation was studied through the analysis of the expression of transcriptional factors involved in muscle differentiation and/or the presence and amount of specific proteins from muscle differentiated cell. The pluripotency from bone marrow MSCs of the two lineages was evidenced and, in the muscular differentiation... (Complete abstract click electronic access below)