931 resultados para BOUND-CONSTRAINED MINIMIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsoft Project is one of the most-widely used software packages for project management. For the scheduling of resource-constrained projects, the package applies a priority-based procedure using a specific schedule-generation scheme. This procedure performs relatively poorly when compared against other software packages or state-of-the-art methods for resource-constrained project scheduling. In Microsoft Project 2010, it is possible to work with schedules that are infeasible with respect to the precedence or the resource constraints. We propose a novel schedule-generation scheme that makes use of this possibility. Under this scheme, the project tasks are scheduled sequentially while taking into account all temporal and resource constraints that a user can define within Microsoft Project. The scheme can be implemented as a priority-rule based heuristic procedure. Our computational results for two real-world construction projects indicate that this procedure outperforms the built-in procedure of Microsoft Project

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to solving that outstanding problem, our more precise predictions are potentially useful for interpreting future high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact and planar donor–acceptor molecule 1 comprising tetrathiafulvalene (TTF) and benzothiadiazole (BTD) units has been synthesised and experimentally characterised by structural, optical, and electrochemical methods. Solution-processed and thermally evaporated thin films of 1 have also been explored as active materials in organic field-effect transistors (OFETs). For these devices, hole field-effect mobilities of μFE=(1.3±0.5)×10−3 and (2.7±0.4)×10−3 cm2 V s−1 were determined for the solution-processed and thermally evaporated thin films, respectively. An intense intramolecular charge-transfer (ICT) transition at around 495 nm dominates the optical absorption spectrum of the neutral dyad, which also shows a weak emission from its ICT state. The iodine-induced oxidation of 1 leads to a partially oxidised crystalline charge-transfer (CT) salt {(1)2I3}, and eventually also to a fully oxidised compound {1I3}⋅1/2I2. Single crystals of the former CT compound, exhibiting a highly symmetrical crystal structure, reveal a fairly good room temperature electrical conductivity of the order of 2 S cm−1. The one-dimensional spin system bears compactly bonded BTD acceptors (spatial localisation of the LUMO) along its ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.