657 resultados para BIFURCATION
Resumo:
A generic, sudden transition to chaos has been experimentally verified using electronic circuits. The particular system studied involves the near resonance of two coupled oscillators at 2:1 frequency ratio when the damping of the first oscillator becomes negative. We identified in the experiment all types of orbits described by theory. We also found that a theoretical, ID limit map fits closely a map of the experimental attractor which, however, could be strongly disturbed by noise. In particular, we found noisy periodic orbits, in good agreement with noise theory.
Resumo:
Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined.
Resumo:
We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
We report numerical evidence of the effects of a periodic modulation in the delay time of a delayed dynamical system. By referring to a Mackey-Glass equation and by adding a modula- tion in the delay time, we describe how the solution of the system passes from being chaotic to shadow periodic states. We analyze this transition for both sinusoidal and sawtooth wave mod- ulations, and we give, in the latter case, the relationship between the period of the shadowed orbit and the amplitude of the modulation. Future goals and open questions are highlighted.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different characterization of the characteristic azimuthal length and a calculation of the ratio of specific heats based on a polytropic exponent. Thanks to these new values, the model predicts two bifurcation points in the behaviour of the flow: the inception point of the instability and the surge point. Experimental data from a pure axial compressor are used to validate the model showing that the prediction of the flow coefficient at the surge point has an error inferior to 5%. For the rotor studied, the paper provides a quantitative and qualitative description of the inception of the instability and of the mechanism involved in the instable region of the compressor map. The paper also discusses the role of rotor efficiency in the position of the bifurcations and gives a sensitivity analysis of its position. Finally, it presents a discussion about how the model can explain the different behaviours exhibited by the same rotor when the flow coefficient is reduced
Resumo:
La configuración de un cilindro acoplado a una semi-esfera, conocida como ’hemispherecylinder’, se considera como un modelo simplificado para numerosas aplicaciones industriales tales como fuselaje de aviones o submarinos. Por tanto, el estudio y entendimiento de los fenómenos fluidos que ocurren alrededor de dicha geometría presenta gran interés. En esta tesis se muestra la investigación del origen y evolución de los, ya conocidos, patrones de flujo (burbuja de separación, vórtices ’horn’ y vórtices ’leeward’) que se dan en esta geometría bajo condiciones de flujo separado. Para ello se han llevado a cabo simulaciones numéricas (DNS) y ensayos experimentales usando la técnica de Particle Image Velocimetry (PIV), para una variedad de números de Reynolds (Re) y ángulos de ataque (AoA). Se ha aplicado sobre los resultados numéricos la teoría de puntos críticos obteniendo, por primera vez para esta geometría, un diagrama de bifurcaciones que clasifica los diferentes regímenes topológicos en función del número de Reynolds y del ángulo de ataque. Se ha llevado a cabo una caracterización completa sobre el origen y la evolución de los patrones estructurales característicos del cuerpo estudiado. Puntos críticos de superficie y líneas de corriente tridimensionales han ayudado a describir el origen y la evolución de las principales estructuras presentes en el flujo hasta alcanzar un estado de estabilidad desde el punto de vista topológico. Este estado se asocia con el patrón de los vórtices ’horn’, definido por una topología característica que se encuentra en un rango de números de Reynolds muy amplio y en regímenes compresibles e incompresibles. Por otro lado, con el objeto de determinar las estructuras presentes en el flujo y sus frecuencias asociadas, se han usado distintas técnicas de análisis: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) y análisis de Fourier. Dichas técnicas se han aplicado sobre los datos experimentales y numéricos, demostrándose la buena concordancia entre ambos resultados. Finalmente, se ha encontrado en ambos casos, una frecuencia dominante asociada con una inestabilidad de los vórtices ’leeward’. ABSTRACT The hemisphere-cylinder may be considered as a simplified model for several geometries found in industrial applications such as aircrafts’ fuselages or submarines. Understanding the complex flow phenomena that surrounds this particular geometry is therefore of major industrial interest. This thesis presents an investigation of the origin and evolution of the complex flow pattern; i.e. separation bubbles, horn vortices and leeward vortices, around the hemisphere-cylinder under separated flow conditions. To this aim, threedimensional Direct Numerical Simulations (DNS) and experimental tests, using Particle Image Velocimetry (PIV) techniques, have been performed for a variety of Reynolds numbers (Re) and angles of attack (AoA). Critical point theory has been applied to the numerical simulations to provide, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and the angle of attack. A complete characterization about the origin and evolution of the complex structural patterns of this geometry has been put in evidence. Surface critical points and surface and volume streamlines were able to describe the main flow structures and their strong dependence with the flow conditions up to reach the structurally stable state. This state was associated with the pattern of the horn vortices, found on ranges from low to high Reynolds numbers and from incompressible to compressible regimes. In addition, different structural analysis techniques have been employed: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and Fourier analysis. These techniques have been applied to the experimental and numerical data to extract flow structure information (i.e. modes and frequencies). Experimental and numerical modes are shown to be in good agreement. A dominant frequency associated with an instability of the leeward vortices has been identified in both, experimental and numerical results.
Resumo:
A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.
Resumo:
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
Resumo:
This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.
Resumo:
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associatedHVgraphs.We showhowthe alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics.We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.
Resumo:
Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.
Resumo:
In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.
Resumo:
Este trabajo analiza distintas inestabilidades en estructuras formadas por distintos materiales. En particular, se capturan y se modelan las inestabilidades usando el método de Riks. Inicialmente, se analiza la bifurcación en depósitos cilíndricos formados por material anisótropo sometidos a carga axial y presión interna. El análisis de bifurcación y post-bifurcación asociados con cilindros de pared gruesa se formula para un material incompresible reforzado con dos fibras que son mecánicamente equivalentes y están dispuestas simétricamente. Consideramos dos casos en la naturaleza de la anisotropía: (i) Fibras refuerzo que tienen una influencia particular sobre la respuesta a cortante del material y (ii) Fibras refuerzo que influyen sólo si la fibra cambia de longitud con la deformación. Se analiza la propagación de las inestabilidades. En concreto, se diferencia en el abultamiento (bulging) entre la propagación axial y la propagación radial de la inestabilidad. Distintos modelos sufren una u otra propagación. Por último, distintas inestabilidades asociadas al mecanismo de ablandamiento del material (material softening) en contraposición al de endurecimiento (hardening) en una estructura (viga) de a: hormigón y b: hormigón reforzado son modeladas utilizando una metodología paralela a la desarrollada en el análisis de inestabilidades en tubos sometidos a presión interna. This present work deals with the instability of structures made of various materials. It captures and models different types of instabilities using numerical analysis. Firstly, we consider bifurcation for anisotropic cylindrical shells subject to axial loading and internal pressure. Analysis of bifurcation and post bifurcation of inflated hyperelastic thick-walled cylinder is formulated using a numerical procedure based on the modified Riks method for an incompressible material with two preferred directions which are mechanically equivalent and are symmetrically disposed. Secondly, bulging/necking motion in doubly fiber-reinforced incompressible nonlinearly elastic cylindrical shells is captured and we consider two cases for the nature of the anisotropy: (i) reinforcing models that have a particular influence on the shear response of the material and (ii) reinforcing models that depend only on the stretch in the fiber direction. The different instability motions are considered. Axial propagation of the bulging instability mode in thin-walled cylinders under inflation is analyzed. We present the analytical solution for this particular motion as well as for radial expansion during bulging evolution. For illustration, cylinders that are made of either isotropic incompressible non-linearly elastic materials or doubly fiber reinforced incompressible non-linearly elastic materials are considered. Finally, strain-softening constitutive models are considered to analyze two concrete structures: a reinforced concrete beam and an unreinforced notch beam. The bifurcation point is captured using the Riks method used previously to analyze bifurcation of a pressurized cylinder.