931 resultados para BAYESIAN NETWORKS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Participation in networks, both as a concept and process, is widely supported in environmental education as a democratic and equitable pathway to individual and social change for sustainability. However, the processes of participation in networks are rarely problematized. Rather, it is assumed that we inherently know how to participate in networks. This assumption means that participation is seldom questioned. Underlying support for participation in networks is a belief that it allows individuals to connect in new and meaningful ways, that individuals can engage in making decisions and in bringing about change in arenas that affect them, and that they will be engaging in new, non-hierarchical and equitable relationships. In this paper we problematize participation in networks. As an example we use research into a decentralized network – described as such in its own literature - the Queensland Environmentally Sustainable Schools Initiative Alliance in Australia – to argue that while network participants were engaged and committed to participation in this network, 'old' forms of top-down engagement and relationships needed to be unlearnt. This paper thus proposes that for participation in decentralized networks to be meaningful, new learning about how to participate needs to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the population pharmacokinetics of an acepromazine (ACP) metabolite (2-(1-hydroxyethyl)promazine) (HEPS) in horses for the estimation of likely detection times in plasma and urine. Acepromazine (30 mg) was administered to 12 horses, and blood and urine samples were taken at frequent intervals for chemical analysis. A Bayesian hierarchical model was fitted to describe concentration-time data and cumulative urine amounts for HEPS. The metabolite HEPS was modelled separately from the parent ACP as the half-life of the parent was considerably less than that of the metabolite. The clearance ($Cl/F_{PM}$) and volume of distribution ($V/F_{PM}$), scaled by the fraction of parent converted to metabolite, were estimated as 769 L/h and 6874 L, respectively. For a typical horse in the study, after receiving 30 mg of ACP, the upper limit of the detection time was 35 hours in plasma and 100 hours in urine, assuming an arbitrary limit of detection of 1 $\mu$g/L, and a small ($\approx 0.01$) probability of detection. The model derived allowed the probability of detection to be estimated at the population level. This analysis was conducted on data collected from only 12 horses, but we assume that this is representative of the wider population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of monopole elements with reduced element spacing of λ/6 to λ/20 is considered for application in digital beam-forming and direction-finding. The small element spacing introduces strong mutual coupling between the array elements. This paper discusses that decoupling can be achieved analytically for arrays with three elements and describes Kuroda’s identities to realize the lumped elements of the derived decoupling network. Design procedures and equations are proposed. Experimental results are presented. The decoupled array has a bandwidth of 1% and a superdirective radiation pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Companies and their services are being increasingly exposed to global business networks and Internet-based ondemand services. Much of the focus is on flexible orchestration and consumption of services, beyond ownership and operational boundaries of services. However, ways in which third-parties in the “global village” can seamlessly self-create new offers out of existing services remains open. This paper proposes a framework for service provisioning in global business networks that allows an open-ended set of techniques for extending services through a rich, multi-tooling environment. The Service Provisioning Management Framework, as such, supports different modeling techniques, through supportive tools, allowing different parts of services to be integrated into new contexts. Integration of service user interfaces, business processes, operational interfaces and business object are supported. The integration specifications that arise from service extensions are uniformly reflected through a kernel technique, the Service Integration Technique. Thus, the framework preserves coherence of service provisioning tasks without constraining the modeling techniques needed for extending different aspects of services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immigrant entrepreneurship, or, self-employment by immigrants (Light & Bonacich, 1988), has been of growing interest to researchers (Hosler, 1996). This is due in part to major immigrant receiving countries, such as Australia, the United States, Canada, the United Kingdom and Western Europe, experiencing a high growth rate in their immigrant populations, leading to a more visible presence of immigrant business in major cities (Woon, 2008). By starting their own businesses, immigrant entrepreneurs may circumvent some of the barriers and disadvantages encountered in looking for a job (Sequeira & Rasheed, 2006). Successful immigrant entrepreneurs will integrate into the economy by creating jobs, providing products and services for members of their own ethnic community and society, as well as introducing new products and services that expand consumers’ choices (Rath & Kloosterman, 2000). Immigrant entrepreneurs tend to start business within their ethnic enclave, as it is an integral part of their social and cultural context and the location where ethnic resources reside (Logan et al., 2002). An ethnic enclave is an interdependent network of social and business relationships that are geographically concentrated with its co-ethnic people (Portes & Bach, 1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Having wrung the most from workforce and workplace productivity initiaitves, innovation has come to the fore as a key goal and directive for public sector organisations to become more efficient. This clarion call for innovation can be heard all around the world, with public services everywhere taking up the message to develop better, smarter, novel, more innovative processes, programs and policies. In the current push for innovation, networks are considered to be a superior vehicle through which collective knowledge can be shared and leveraged; replacing or at least supplementing the role function previously provided by inventive leaders...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth in the number of users using social networks and the information that a social network requires about their users make the traditional matching systems insufficiently adept at matching users within social networks. This paper introduces the use of clustering to form communities of users and, then, uses these communities to generate matches. Forming communities within a social network helps to reduce the number of users that the matching system needs to consider, and helps to overcome other problems from which social networks suffer, such as the absence of user activities' information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased using the community information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generic, flexible social media spaces such as Facebook and Twitter constitute an increasingly important element in our overall media repertoires. They provide a technological basis for instant and world-wide, ad hoc, many-to-many communication, and their effect on global communication patterns has already been highlighted. The short-messaging platform Twitter, for example, caters for uses ranging from interpersonal and quasi-private phatic exchanges to ‘ambient journalism’: ad hoc new reporting and dissemination as major events break. Many such uses have themselves emerged through user-driven processes: even standard Twitter conventions such as the @reply (to publicly address a fellow user) or the #hashtag(to collect related messages in an easily accessible space) are user inventions, in fact, and were incorporated into Twitter’s own infrastructure only subsequently. This demonstrates the substantial potential of social, user-led innovation in social media spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation of SOA needs to scale for flexible service consumption, beyond organizational boundaries and current B2B applications, into communities, eco-systems, and business networks. In the wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt, and expose services where they can be discovered, ordered, consumed, metered, and paid for, through new applications and opportunities, driven by third parties in the global "village". This trend is already underway, in different ways, through various early adopter market segments. For the small medium enterprises segment, Google, Intuit-Microsoft, and others have launched appstores, through which an open-ended array of hosted applications are sourced from the development community and procured as maketplace commondities. In the corporate sector, the marketplace model and business network hubs are being put in place on top of connectivity and network orchestration investments for capitalizing services as tradable assets, seen in banking/finance (e.g. American Express Intelligent Marketplace), logistics (e.g., the E2open hub), and the public sector (e.g., UK DirectGov whole-of-government citizen services delivery).