981 resultados para B2 SUBUNIT ISOFORM
Resumo:
Proteins of the regulators of G protein signaling (RGS) family modulate the duration of intracellular signaling by stimulating the GTPase activity of G protein α subunits. It has been established that the ninth member of the RGS family (RGS9) participates in accelerating the GTPase activity of the photoreceptor-specific G protein, transducin. This process is essential for timely inactivation of the phototransduction cascade during the recovery from a photoresponse. Here we report that functionally active RGS9 from vertebrate photoreceptors exists as a tight complex with the long splice variant of the G protein β subunit (Gβ5L). RGS9 and Gβ5L also form a complex when coexpressed in cell culture. Our data are consistent with the recent observation that several RGS proteins, including RGS9, contain G protein γ-subunit like domain that can mediate their association with Gβ5 (Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S. F., Wall, M. A., Chung, S., Mangion, J., Arya, S., Gilman, A. G. & Siderovski, D. P. (1998) Proc. Natl. Acad. Sci. USA 95, 13307–13312). We report an example of such a complex whose cellular localization and function are clearly defined.
Resumo:
A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.
Resumo:
Several regulators of G protein signaling (RGS) proteins contain a G protein γ-subunit-like (GGL) domain, which, as we have shown, binds to Gβ5 subunits. Here, we extend our original findings by describing another GGL-domain-containing RGS, human RGS6. When RGS6 is coexpressed with different Gβ subunits, only RGS6 and Gβ5 interact. The expression of mRNA for RGS6 and Gβ5 in human tissues overlaps. Predictions of α-helical and coiled-coil character within GGL domains, coupled with measurements of Gβ binding by GGL domain mutants, support the contention that Gγ-like regions within RGS proteins interact with Gβ5 subunits in a fashion comparable to conventional Gβ/Gγ pairings. Mutation of the highly conserved Phe-61 residue of Gγ2 to tryptophan, the residue present in all GGL domains, increases the stability of the Gβ5/Gγ2 heterodimer, highlighting the importance of this residue to GGL/Gβ5 association.
Resumo:
The regulated expression of type A γ-aminobutyric acid receptor (GABAAR) subunit genes is postulated to play a role in neuronal maturation, synaptogenesis, and predisposition to neurological disease. Increases in GABA levels and changes in GABAAR subunit gene expression, including decreased β1 mRNA levels, have been observed in animal models of epilepsy. Persistent exposure to GABA down-regulates GABAAR number in primary cultures of neocortical neurons, but the regulatory mechanisms remain unknown. Here, we report the identification of a TATA-less minimal promoter of 296 bp for the human GABAAR β1 subunit gene that is neuron specific and autologously down-regulated by GABA. β1 promoter activity, mRNA levels, and subunit protein are decreased by persistent GABAAR activation. The core promoter, 270 bp, contains an initiator element (Inr) at the major transcriptional start site. Three concatenated copies of the 10-bp Inr and its immediate 3′ flanking sequence produce full neural specific activity that is down-regulated by GABA in transiently transfected neocortical neurons. Taking these results together with those of DNase I footprinting, electrophoretic mobility shift analysis, and 2-bp mutagenesis, we conclude that GABA-induced down-regulation of β1 subunit mRNAs involves the differential binding of a sequence-specific basal transcription factor(s) to the Inr. The results support a transcriptional mechanism for the down-regulation of β1 subunit GABAAR gene expression and raises the possibility that altered levels of sequence-specific basal transcription factors may contribute to neurological disorders such as epilepsy.
Resumo:
The Saccharomyces cerevisiae Rlp7 protein has extensive identity and similarity to the large ribosomal subunit L7 proteins and shares an RNA-binding domain with them. Rlp7p is not a ribosomal protein; however, it is encoded by an essential gene and therefore must perform a function essential for cell growth. In this report, we show that Rlp7p is a nucleolar protein that plays a critical role in processing of precursors to the large ribosomal subunit RNAs. Pulse–chase labeling experiments with Rlp7p-depleted cells reveal that neither 5.8SS, 5.8SL, nor 25S is produced, indicating that both the major and minor processing pathways are affected. Analysis of processing intermediates by primer extension indicates that Rlp7p-depleted cells accumulate the 27SA3 precursor RNA, which is normally the major substrate (85%) used to produce the 5.8S and 25S rRNAs, and the ratio of 27SBL to 27SBS precursors changes from approximately 1:8 to 8:1 (depleted cells). Because 27SA3 is the direct precursor to 27SBS, we conclude that Rlp7p is specifically required for the 5′ to 3′ exonucleolytic trimming of the 27SA3 into the 27SBS precursor. As it is essential for processing in both the major and minor pathways, we propose that Rlp7p may act as a specificity factor that binds precursor rRNAs and tethers the enzymes that carry out the early 5′ to 3′ exonucleolytic reactions that generate the mature rRNAs. Rlp7p may also be required for the endonucleolytic cleavage in internal transcribed spacer 2 that separates the 5.8S rRNA from the 25S rRNA.
Resumo:
The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells.
Resumo:
Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca2+ influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca2+-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.
Resumo:
The core enzyme of Escherichia coli RNA polymerase acquires essential promoter recognition and transcription initiation activities by binding one of several σ subunits. To characterize the proximity between σ70, the major σ for transcription of the growth-related genes, and the core enzyme subunits (α2ββ′), we analyzed the protein-cutting patterns produced by a set of covalently tethered FeEDTA probes [FeBABE: Fe (S)-1-(p-bromoacetamidobenzyl)EDTA]. The probes were positioned in or near conserved regions of σ70 by using seven mutants, each carrying a single cysteine residue at position 132, 376, 396, 422, 496, 517, or 581. Each FeBABE-conjugated σ70 was bound to the core enzyme, which led to cleavage of nearby sites on the β and β′ subunits (but not α). Unlike the results of random cleavage [Greiner, D. P., Hughes, K. A., Gunasekera, A. H. & Meares, C. F. (1996) Proc. Natl. Acad. Sci. USA 93, 71–75], the cut sites from different probe-modified σ70 proteins are clustered in distinct regions of the subunits. On the β subunit, cleavage is observed in two regions, one between residues 383 and 554, including the conserved C and Rif regions; and the other between 854 and 1022, including conserved region G, regions of ppGpp sensitivity, and one of the segments forming the catalytic center of RNA polymerase. On the β′ subunit, the cleavage was identified within the sequence 228–461, including β′ conserved regions C and D (which comprise part of the catalytic center).
Resumo:
The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly α-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds into a rod-like structure like influenza HA2 and HIV-1 gp41, providing further evidence that viral fusion proteins from diverse families such as Orthomyxoviridae (Influenza), Retroviridae (HIV-1), and Filoviridae (Ebola) share common structural features, and suggesting a common membrane fusion mechanism.
Resumo:
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.
Resumo:
The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Δ mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.
Resumo:
The γ subunit of the Na,K-ATPase is a hydrophobic protein of approximately 10 kDa. The γ subunit was expressed in Sf-9 insect cells and Xenopus oocytes to ascertain its role in Na,K-ATPase function. Immunoblotting has shown that the γ subunit is expressed in Sf-9 cells infected with recombinant baculovirus containing the cDNA for the human γ subunit. Confocal microscopy demonstrates that the γ subunit can be delivered to the plasma membrane of Sf-9 cells independently of the other Na,K-ATPase subunits and that γ colocalizes with α1 when these proteins are coexpressed. When Sf-9 cells were coinfected with α1 and γ, antibodies to the γ subunit were able to coimmunoprecipitate the α1 subunit, suggesting that γ is able to associate with α1. The γ subunit is a member of a family of single-pass transmembrane proteins that induces ion fluxes in Xenopus oocytes. Evidence that the γ subunit is a functional component was supported by experiments showing γ-induced cation channel activity when expressed in oocytes and increases in Na+ and K+ uptake when expressed in Sf-9 cells.
Resumo:
Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.
Resumo:
Telomerase is a ribonucleoprotein complex that elongates telomeres, allowing the stable maintenance of chromosomes during multiple cell divisions. Here, we describe the isolation and characterization of the catalytic subunit of mouse telomerase, mTERT (mouse telomerase reverse transcriptase), an essential protein component of the telomerase complex. During embryonic development, mTERT mRNA is abundantly expressed in the whole embryo, especially in regions of intense proliferation. We found that the mTERT mRNA expression in both embryonic and adult tissues is independent of the essential RNA component of telomerase, mTR, and therefore, of the formation of active telomerase complexes. mTERT protein is present exclusively in tissues with telomerase activity, such as testis, spleen, and thymus. mTERT protein is barely detectable in the thymus of mTR−/− mice, suggesting that mTERT protein stability in this tissue may depend on the actual assembly of active telomerase complexes. Finally, we found that mouse and human telomerase catalytic subunit is located in the cell nucleus, and its localization is not regulated during cell cycle progression.
Resumo:
Lysyl hydroxylase (EC 1.14.11.4), a homodimer, catalyzes the formation of hydroxylysine in collagens. Recently, an isoenzyme termed lysyl hydroxylase 2 has been cloned from human sources [M. Valtavaara, H. Papponen, A.-M. Pirttilä, K. Hiltunen, H. Helander and R. Myllylä (1997) J. Biol. Chem. 272, 6831–6834]. We report here on the cloning of a third human lysyl hydroxylase isoenzyme, termed lysyl hydroxylase 3. The cDNA clones encode a 738 amino acid polypeptide, including a signal peptide of 24 residues. The overall amino acid sequence identity between the processed human lysyl hydroxylase 3 and 1 polypeptides is 59%, and that between the processed lysyl hydroxylase 3 and 2 polypeptides is 57%, whereas the identity to the processed Caenorhabditis elegans polypeptide is only 45%. All four recently identified critical residues at the catalytic site, two histidines, one aspartate, and one arginine, are conserved in all these polypeptides. The mRNA for lysyl hydroxylase 3 was found to be expressed in a variety of tissues, but distinct differences appear to exist in the expression patterns of the three isoenzyme mRNAs. Recombinant lysyl hydroxylase 3 expressed in insect cells by means of a baculovirus vector was found to be more soluble than lysyl hydroxylase 1 expressed in the same cell type. No differences in catalytic properties were found between the recombinant lysyl hydroxylase 3 and 1 isoenzymes. Deficiency in lysyl hydroxylase 1 activity is known to cause the type VI variant of the Ehlers–Danlos syndrome, and it is therefore possible that deficiency in lysyl hydroxylase 3 activity may lead to some other variant of this syndrome or to some other heritable connective tissue disorder.