797 resultados para Ast-k131
Resumo:
BACKGROUND ; AIMS: Nonalcoholic steatohepatitis (NASH) is a frequent liver disease that can progress to cirrhosis and for which there is no recognized therapy. UDCA and vitamin E have been considered separately as therapeutic options and have not been shown to be effective. This study tested their combination. METHODS: Patients with elevated aminotransferase levels and drinking less than 40 g alcohol/week with biopsy-proven NASH were randomly assigned to receive UDCA 12-15 mg.kg-1.day-1 with vitamin E 400 IU twice a day (UDCA/Vit E), UDCA with placebo (UDCA/P), or placebo/placebo (P/P). After 2 years, they underwent a second liver biopsy. Biopsy specimens were collected, blinded, and scored by a single liver pathologist. RESULTS: Forty eight patients were included, 15 in the UDCA/Vit E group, 18 in the UDCA/P group, and 15 in the P/P group; 8 patients dropped out, none because of side effects. Baseline parameters were not significantly different between the 3 groups. Body mass index remained unchanged during the study. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels diminished significantly in the UDCA/Vit E group. Neither the AST nor the ALT levels improved in the P/P group and only the ALT levels in the UDCA/P group. Histologically, the activity index was unchanged at the end of the study in the P/P and UDCA/P groups, but it was significantly better in the UDCA/Vit E group, mostly as a result of regression of steatosis. CONCLUSIONS: Two years of treatment with UDCA in combination with vitamin E improved laboratory values and hepatic steatosis of patients with NASH. Larger trials are warranted.
Resumo:
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Resumo:
Primaquine (PQ). a clinically important derivative of 8-aminoquinoline used against the hepatic stages (hypnozoites) of Plasmodium vivax and Plasmodium ova Ie. was studied to evaluate and compare between mRNA expression. and biochemical and histological parameters of hepatic stress in adult Swiss mice (Mus musculus). Following single oral dose of PQ (40 mglkg. bw). alanine aminotransferase (ALT) and aspartate aminotransferase (AST) along with hematoxylin and eosin stained liver sections did not show any signs of hepatic stress at 6. 12 and 24 h except for ALT activity at 6 h. However. analysis at RNA transcript level revealed consistent and significant deregulation (p<0.01 and twofold) of 16 probes corresponding to important cellular processes such as protein transportation. transcription regulation. intracellular signaling. protein synthesis, hematopoiesis, cell adhesion and cell proliferation. Pathway analysis identified large number of affected genes corresponding to 40 Gene Ontology terms having a z score greaibr than 2. These results indicate that PQ at high doses may affect gene expression in liver and may produce undesirable outcomes if consumed for longer durations.