991 resultados para Archives numériques personnelles
Resumo:
Peat deposits in Greenland and Denmark were investigated to show that high-resolution dating of these archives of atmospheric deposition can be provided for the last 50 years by radiocarbon dating using the atmospheric bomb pulse. (super 14) C was determined in macrofossils from sequential one cm slices using accelerator mass spectrometry (AMS). Values were calibrated with a general-purpose curve derived from annually averaged atmospheric (super 14) CO (sub 2) values in the northernmost northern hemisphere (NNH, 30 degrees -90 degrees N). We present a through review of (super 14) C bomb-pulse data from the NNH including our own measurements made in tree rings and seeds from Arizona as well as other previously published data. We show that our general-purpose calibration curve is valid for the whole NNH producing accurate dates within 1-2 years. In consequence, (super 14) C AMS can precisely date individual points in recent peat deposits within the range of the bomb-pulse (from the mid-1950s on). Comparing the (super 14) C AMS results with the customary dating method for recent peat profiles by (super 210) Pb, we show that the use of (super 137) Cs to validate and correct (super 210) Pb dates proves to be more problematic than previously supposed. As a unique example of our technique, we show how this chronometer can be applied to identify temporal changes in Hg concentrations from Danish and Greenland peat cores.
Resumo:
The Baseline Surface Radiation Network (BSRN) and its central archive - the World Radiation Monitoring Center (WRMC) - was created in 1992. It is a project of the Data Assimilation Panel from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP) and as such is aimed at detecting important changes in the Earth's radiation field at the Earth's surface which may be related to climate changes. The data are of primary importance in supporting the validation and confirmation of satellite and computer model estimates of these quantities. At a small number of stations in contrasting climatic zones, covering a latitude range from 80°N to 90°S, solar and atmospheric radiation is measured with instruments of the highest available accuracy and with high time resolution (1 to 3 minutes). Since 2008 the WRMC is hosted by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany (http://www.bsrn.awi.de/).
Resumo:
The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.
Resumo:
The Journal Retention and Needs Listing (JRNL) program: 1) allows libraries to expose lists of print journals for which they have made retention commitments; 2) express needs (or gaps) in their holdings; and 3) communicate offers to fill the gaps in other participating libraries’ holdings. Multiple library consortia and their member libraries use JRNL to facilitate communication between library staff to identify holding commitments, fill gaps, and guide deselection decisions. JRNL is commonly developed and governed by the participating consortia. Currently, those consortia are the Florida Academic Repository (FLARE), the Association of Southeastern Research Libraries (ASERL)/Washington Research Library Consortium (WRLC), and the Western Regional Storage Trust (WEST).
Resumo:
v. 2 (1851)
Resumo:
ser.2:t.2=t.12 (1884)
Resumo:
ser.3:t.8=t.28 (1900)
Resumo:
1
Resumo:
ser.3:t.1=t.21 (1893)
Resumo:
17, ser. 2, 1863
Resumo:
1, 1897