980 resultados para Archive of Underwater Imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound detection of sub-clinical atherosclerosis (ATS) may help identify individuals at high cardiovascular risk. Most studies evaluated intima-media thickness (IMT) at carotid level. We compared the relationships between main cardiovascular risk factors (CVRF) and five indicators of ATS (IMT, mean and maximal plaque thickness, mean and maximal plaque area) at both carotid and femoral levels. Ultrasound was performed on 496 participants aged 45-64 years randomly selected from the general population of the Republic of Seychelles. 73.4 % participants had ≥ 1 plaque (IMT thickening ≥ 1.2 mm) at carotid level and 67.5 % at femoral level. Variance (adjusted R2) contributed by age, sex and CVRF (smoking, LDL-cholesterol, HDL-cholesterol, blood pressure, diabetes) in predicting any of the ATS markers was larger at femoral than carotid level. At both carotid and femoral levels, the association between CVRF and ATS was stronger based on plaque-based markers than IMT. Our findings show that the associations between CVRF and ATS markers were stronger at femoral than carotid level, and with plaque-based markers rather than IMT. Pending comparison of these markers using harder cardiovascular endpoints, our findings suggest that markers based on plaque morphology assessed at femoral artery level might be useful cardiovascular risk predictors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 1895, when X-rays were discovered, ionizing radiation became part of our life. Its use in medicine has brought significant health benefits to the population globally. The benefit of any diagnostic procedure is to reduce the uncertainty about the patient's health. However, there are potential detrimental effects of radiation exposure. Therefore, radiation protection authorities have become strict regarding the control of radiation risks.¦There are various situations where the radiation risk needs to be evaluated. International authority bodies point to the increasing number of radiologic procedures and recommend population surveys. These surveys provide valuable data to public health authorities which helps them to prioritize and focus on patient groups in the population that are most highly exposed. On the other hand, physicians need to be aware of radiation risks from diagnostic procedures in order to justify and optimize the procedure and inform the patient.¦The aim of this work was to examine the different aspects of radiation protection and investigate a new method to estimate patient radiation risks.¦The first part of this work concerned radiation risk assessment from the regulatory authority point of view. To do so, a population dose survey was performed to evaluate the annual population exposure. This survey determined the contribution of different imaging modalities to the total collective dose as well as the annual effective dose per caput. It was revealed that although interventional procedures are not so frequent, they significantly contribute to the collective dose. Among the main results of this work, it was shown that interventional cardiological procedures are dose-intensive and therefore more attention should be paid to optimize the exposure.¦The second part of the project was related to the patient and physician oriented risk assessment. In this part, interventional cardiology procedures were studied by means of Monte Carlo simulations. The organ radiation doses as well as effective doses were estimated. Cancer incidence risks for different organs were calculated for different sex and age-at-exposure using the lifetime attributable risks provided by the Biological Effects of Ionizing Radiations Report VII. Advantages and disadvantages of the latter results were examined as an alternative method to estimate radiation risks. The results show that this method is the most accurate, currently available, to estimate radiation risks. The conclusions of this work may guide future studies in the field of radiation protection in medicine.¦-¦Depuis la découverte des rayons X en 1895, ce type de rayonnement a joué un rôle important dans de nombreux domaines. Son utilisation en médecine a bénéficié à la population mondiale puisque l'avantage d'un examen diagnostique est de réduire les incertitudes sur l'état de santé du patient. Cependant, leur utilisation peut conduire à l'apparition de cancers radio-induits. Par conséquent, les autorités sanitaires sont strictes quant au contrôle du risque radiologique.¦Le risque lié aux radiations doit être estimé dans différentes situations pratiques, dont l'utilisation médicale des rayons X. Les autorités internationales de radioprotection indiquent que le nombre d'examens et de procédures radiologiques augmente et elles recommandent des enquêtes visant à déterminer les doses de radiation délivrées à la population. Ces enquêtes assurent que les groupes de patients les plus à risque soient prioritaires. D'un autre côté, les médecins ont également besoin de connaître le risque lié aux radiations afin de justifier et optimiser les procédures et informer les patients.¦Le présent travail a pour objectif d'examiner les différents aspects de la radioprotection et de proposer une manière efficace pour estimer le risque radiologique au patient.¦Premièrement, le risque a été évalué du point de vue des autorités sanitaires. Une enquête nationale a été réalisée pour déterminer la contribution des différentes modalités radiologiques et des divers types d'examens à la dose efficace collective due à l'application médicale des rayons X. Bien que les procédures interventionnelles soient rares, elles contribuent de façon significative à la dose délivrée à la population. Parmi les principaux résultats de ce travail, il a été montré que les procédures de cardiologie interventionnelle délivrent des doses élevées et devraient donc être optimisées en priorité.¦La seconde approche concerne l'évaluation du risque du point de vue du patient et du médecin. Dans cette partie, des procédures interventionnelles cardiaques ont été étudiées au moyen de simulations Monte Carlo. La dose délivrée aux organes ainsi que la dose efficace ont été estimées. Les risques de développer des cancers dans plusieurs organes ont été calculés en fonction du sexe et de l'âge en utilisant la méthode établie dans Biological Effects of Ionizing Radiations Report VII. Les avantages et inconvénients de cette nouvelle technique ont été examinés et comparés à ceux de la dose efficace. Les résultats ont montré que cette méthode est la plus précise actuellement disponible pour estimer le risque lié aux radiations. Les conclusions de ce travail pourront guider de futures études dans le domaine de la radioprotection en médicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, modern techniques of medical imaging such as MDCT (multidetector-computed tomography) and MRI (magnetic resonance imaging) have pioneered post mortem (pm) investigations, especially in forensic medicine. Particularly pm angiography permits investigating the vascular system in a way which is not possible by performing only conventional autopsy. Beside these radiological methods, other modem visualizing techniques like the three dimensional (3D) surface scan have been implemented in order perform reconstructions of complex cases. By the use of pm imaging techniques, more objective and accurate documentations can be realized that permit an increase of quality in forensic investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to evaluate the diagnostic value of postmortem multi-computed tomography (MDCT) and MDCT-angiography for sudden cardiac deaths related to ischemic heart disease. Twenty three cases were selected based on clinical history and the results of native MDCT, multiphase post-mortem CT-angiography and conventional autopsy were compared. Radiological examination showed calcification of coronary arteries in 78% of the cases, most of which were not detailed at autopsy. MDCT-angiography allowed better visualization of the coronary arteries than MDCT and permitted the evaluation of stenoses and occlusions. Of the 14 cases of coronary thrombosis detected at conventional autopsy, 11 were visible as stop of perfusion with CT-angiography and three were found to be partly perfused. One case had an old thrombosis with collateral circulation. One case had a coronary artery postmortem clot found with MDCT-angiography. Coronary artery calcifications are more easily detected and documented with radiological examination than with conventional autopsy. MDCT is of limited diagnostic value for ischemic heart disease. MDCT-angiography, when correctly interpreted, is a reasonable tool to view the morphology of coronary arteries, rule out significant coronary artery stenoses, identify occlusions and direct sampling for histological examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advances in terms of perfusion imaging, the "time is brain" approach used for acute reperfusion therapy in ischemic stroke patients is slowly being replaced by a "penumbra is brain" or "imaging is brain" approach. But the concept of penumbra-guided reperfusion therapy has not been validated. The lack of standardization in penumbral imaging is one of the main contributing factors for this absence of validation. This article reviews the issues underlying the lack of standardization of perfusion-CT for penumbra imaging, and offers avenues to remedy this situation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The ASTRAL score was recently shown to reliably predict three-month functional outcome in patients with acute ischemic stroke. AIM: The study aims to investigate whether information from multimodal imaging increases ASTRAL score's accuracy. METHODS: All patients registered in the ASTRAL registry until March 2011 were included. In multivariate logistic-regression analyses, we added covariates derived from parenchymal, vascular, and perfusion imaging to the 6-parameter model of the ASTRAL score. If a specific imaging covariate remained an independent predictor of three-month modified Rankin score > 2, the area-under-the-curve (AUC) of this new model was calculated and compared with ASTRAL score's AUC. We also performed similar logistic regression analyses in arbitrarily chosen patient subgroups. RESULTS: When added to the ASTRAL score, the following covariates on admission computed tomography/magnetic resonance imaging-based multimodal imaging were not significant predictors of outcome: any stroke-related acute lesion, any nonstroke-related lesions, chronic/subacute stroke, leukoaraiosis, significant arterial pathology in ischemic territory on computed tomography angiography/magnetic resonance angiography/Doppler, significant intracranial arterial pathology in ischemic territory, and focal hypoperfusion on perfusion-computed tomography. The Alberta Stroke Program Early CT score on plain imaging and any significant extracranial arterial pathology on computed tomography angiography/magnetic resonance angiography/Doppler were independent predictors of outcome (odds ratio: 0·93, 95% CI: 0·87-0·99 and odds ratio: 1·49, 95% CI: 1·08-2·05, respectively) but did not increase ASTRAL score's AUC (0·849 vs. 0·850, and 0·8563 vs. 0·8564, respectively). In exploratory analyses in subgroups of different prognosis, age or stroke severity, no covariate was found to increase ASTRAL score's AUC, either. CONCLUSIONS: The addition of information derived from multimodal imaging does not increase ASTRAL score's accuracy to predict functional outcome despite having an independent prognostic value. More selected radiological parameters applied in specific subgroups of stroke patients may add prognostic value of multimodal imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Peroxisome Proliferator-Activated Receptors (PPARs) form a family of three nuclear receptors regulating important cellular and metabolic functions. PPARs control gene expression by directly binding to target promoters as heterodimers with the Retinoid X Receptor (RXR), and their transcriptional activity is enhanced upon activation by natural or pharmacological ligands. The binding of PPAR/RXR heterodimers on target promoters allows the anchoring of a series of coactivators and corepressors involved in promoter remodeling and the recruitment of the transcription machinery. The transcriptional output finally depends on a complex interplay between (i) the respective expression levels of PPARs, RXRs and of other nuclear receptors competing for DNA binding and RXR recruitment, (ii) the availability and the nature of PPAR and RXR ligands, (iii) the expression levels and the nature of the different coactivators and corepressors and (iv) the sequence and the epigenetic status of the promoter. Understanding how all these factors and signals integrate and fine-tune transcription remains a challenge but is necessary to understand the specificity of the physiological functions regulated by PPARs. The work presented herein focuses on the molecular mechanisms of PPAR action and aims at understanding how the interactions and mobility of the receptor modulate transcription in the physiological context of a living cell: Such observations in vivo rely on the use of engineered fluorescent protein chimeras and require the development and the application of complementary imaging techniques such as Fluorescence Recovery After Photobleaching (FRAP), Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS). Using such techniques, PPARs are shown to reside solely in the nucleus where they are constitutively associated with RXR but transcriptional activation by ligand binding -does not promote the formation of sub-nuclear structures as observed with other nuclear receptors. In addition, the engagement of unliganded PPARs in large complexes of cofactors in living cells provides a molecular basis for their ligand-independent activity. Ligand binding reduces receptor diffusion by promoting the recruitment of coactivators which further enlarge the size of PPAR complexes to acquire full transcriptional competence. Using these molecular approaches, we deciphered the molecular mechanisms through which phthalates, a class of pollutants from the plastic industry, interfere with PPARγ signaling. Mono-ethyl-hexyl-phthalate (MEHP) binding induces the recruitment of a specific subset of cofactors and translates into the expression of a specific subset of target genes, the transcriptional output being strongly conditioned by the differentiation status of the cell. This selective PPARγ modulation induces limited adipogenic effects in cellular models while exposure to phthalates in animal models leads to protective effects on glucose tolerance and diet-induced obesity. These results demonstrate that phthalates influence lipid and carbohydrate metabolism through complex mechanisms which most likely involve PPARγ but also probably PPARα and PPARß, Altogether, the molecular and physiological demonstration of the interference of pollutants with PPAR action outlines an important role of chemical exposure in metabolic regulations. Résumé Les PPARs (Peroxisome Proliferator-Activated Receptors) forment une famille de récepteurs nucléaires qui régulent des fonctions cellulaires et métaboliques importantes. Les PPARs contrôlent l'expression des gènes en se liant directement à leurs promoteurs sous forme d'hétérodimères avec les récepteurs RXR (Retinoid X Receptor), et leur activité transcriptionnelle est stimulée par la liaison de ligands naturels ou pharmacologiques. L'association des hétérodimères PPAR/RXR avec les promoteurs des gènes cibles permet le recrutement de coactivateurs et de corépresseurs qui vont permettre le remodelage de la chromatine et le recrutement de la machinerie transcriptionnelle. Les actions transcriptionnelles du récepteur dépendent toutefois d'interactions complexes qui sont régulées par (i) le niveau d'expression des PPARs, des RXRs et d'autres récepteurs nucléaires entrant en compétition pour la liaison à l'ADN et l'association avec RXR, (ii) la disponibilité et la nature de ligands de PPAR et de RXR, (iii) les niveaux d'expression et la nature des différents coactivateurs et corépresseurs et (iv) la séquence et le marquage épigénétique des promoteurs. La compréhension des mécanismes qui permettent d'intégrer ces aspects pour assurer une régulation fine de l'activité transcriptionnelle est un défi qu'il est nécessaire de relever pour comprendre la spécificité des fonctions physiologiques régulées par les PPARs. Ce travail concerne l'étude des mécanismes d'action moléculaire des PPARs et vise à mieux comprendre comment les interactions du récepteur avec d'autres protéines ainsi que la mobilité de ce dernier régulent son activité transcriptionnelle dans le contexte physiologique des cellules vivantes. De telles observations reposent sur l'emploi de protéines fusionnées à des protéines fluorescentes ainsi que sur le développement et l'utilisation de techniques d'imagerie complémentaires telles que le FRAP (Fluorescence Recovery After Photobleaching), le FRET (Fluorescence Resonance Energy Transfer) ou la FCS (Fluorescence Corrélation Spectroscopy). En appliquant ces méthodes, nous avons pu montrer que les PPARs résident toujours dans le noyau où ils sont associés de manière constitutive à RXR, mais que l'ajout de ligand n'induit pas la formation de structures sub-nucléaires comme cela a pu être décrit pour d'autres récepteurs nucléaires. De plus, les PPARs sont engagés dans de larges complexes protéiques de cofacteurs en absence de ligand, ce qui procure une explication moléculaire à leur activité ligand-indépendante. La liaison du ligand réduit la vitesse de diffusion du récepteur en induisant le recrutement de coactivateurs qui augmente encore plus la taille des complexes afin d'acquérir un potentiel d'activation maximal. En utilisant ces approches moléculaires, nous avons pu caractériser les mécanismes permettant aux phtalates, une classe de polluants provenant de l'industrie plastique, d'interférer avec PPARγ. La liaison du mono-ethyl-hexyl-phtalate (NERF) à PPARγ induit un recrutement sélectif de cofacteurs, se traduisant par l'induction spécifique d'un sous-ensemble de gènes qui varie en fonction du niveau de différentiation cellulaire. La modulation sélective de PPARγ par le MEHP provoque une adipogenèse modérée dans des modèles cellulaires alors que l'exposition de modèles animaux aux phtalates induit des effets bénéfiques sur la tolérance au glucose et sur le développement de l'obésité. Toutefois, les phtalates ont une action complexe sur le métabolisme glucido-lipidique en faisant intervenir PPARγ mais aussi probablement PPARα et PPARß. Cette démonstration moléculaire et physiologique de l'interférence des polluants avec les récepteurs nucléaires PPAR souligne un rôle important de l'exposition à de tels composés dans les régulations métaboliques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of sediments and rocks, as well as their distribution at theMartian surface, represent a long term archive of processes, which have formed theplanetary surface. A survey of chemical compositions by means of Compositional DataAnalysis represents a valuable tool to extract direct evidence for weathering processesand allows to quantify weathering and sedimentation rates. clr-biplot techniques areapplied for visualization of chemical relationships across the surface (“chemical maps”).The variability among individual suites of data is further analyzed by means of clr-PCA,in order to extract chemical alteration vectors between fresh rocks and their crusts andfor an assessment of different source reservoirs accessible to soil formation. Bothtechniques are applied to elucidate the influence of remote weathering by combinedanalysis of several soil forming branches. Vector analysis in the Simplex provides theopportunity to study atmosphere surface interactions, including the role andcomposition of volcanic gases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread use of abdominal imaging technologies has led to an increase in the incidental finding of liver tumors. Most of these lesions are asymptomatic and will not require any treatment. With the use of contrast-enhanced radiological studies, most of the tumors can be reliably diagnosed by non-invasive means. In case of diagnostic uncertainty, patients should not undergo percutaneous biopsy but rather complete resection of the lesion for an unequivocal diagnosis. Such pathologies must be taken charge of in centers with expertise by interdisciplinary teams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.