849 resultados para Applied artificial intelligence
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
Organisations in Multi-Agent Systems (MAS) have proven to be successful in regulating agent societies. Nevertheless, changes in agents' behaviour or in the dynamics of the environment may lead to a poor fulfilment of the system's purposes, and so the entire organisation needs to be adapted. In this paper we focus on endowing the organisation with adaptation capabilities, instead of expecting agents to be capable of adapting the organisation by themselves. We regard this organisational adaptation as an assisting service provided by what we call the Assistance Layer. Our generic Two Level Assisted MAS Architecture (2-LAMA) incorporates such a layer. We empirically evaluate this approach by means of an agent-based simulator we have developed for the P2P sharing network domain. This simulator implements 2-LAMA architecture and supports the comparison between different adaptation methods, as well as, with the standard BitTorrent protocol. In particular, we present two alternatives to perform norm adaptation and one method to adapt agents'relationships. The results show improved performance and demonstrate that the cost of introducing an additional layer in charge of the system's adaptation is lower than its benefits.
Resumo:
Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).
Resumo:
We describe the version of the GPT planner to be used in the planning competition. This version, called mGPT, solves mdps specified in the ppddllanguage by extracting and using different classes of lower bounds, along with various heuristic-search algorithms. The lower bounds are extracted from deterministic relaxations of the mdp where alternativeprobabilistic effects of an action are mapped into different, independent, deterministic actions. The heuristic-search algorithms, on the other hand, use these lower bounds for focusing the updates and delivering a consistent value function over all states reachable from the initial state with the greedy policy.
Resumo:
OBJECTIVE: Imaging during a period of minimal myocardial motion is of paramount importance for coronary MR angiography (MRA). The objective of our study was to evaluate the utility of FREEZE, a custom-built automated tool for the identification of the period of minimal myocardial motion, in both a moving phantom at 1.5 T and 10 healthy adults (nine men, one woman; mean age, 24.9 years; age range, 21-32 years) at 3 T. CONCLUSION: Quantitative analysis of the moving phantom showed that dimension measurements approached those obtained in the static phantom when using FREEZE. In vitro, vessel sharpness, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were significantly improved when coronary MRA was performed during the software-prescribed period of minimal myocardial motion (p < 0.05). Consistent with these objective findings, image quality assessments by consensus review also improved significantly when using the automated prescription of the period of minimal myocardial motion. The use of FREEZE improves image quality of coronary MRA. Simultaneously, operator dependence can be minimized while the ease of use is improved.
Resumo:
Planning with partial observability can be formulated as a non-deterministic search problem in belief space. The problem is harder than classical planning as keeping track of beliefs is harder than keeping track of states, and searching for action policies is harder than searching for action sequences. In this work, we develop a framework for partial observability that avoids these limitations and leads to a planner that scales up to larger problems. For this, the class of problems is restricted to those in which 1) the non-unary clauses representing the uncertainty about the initial situation are nvariant, and 2) variables that are hidden in the initial situation do not appear in the body of conditional effects, which are all assumed to be deterministic. We show that such problems can be translated in linear time into equivalent fully observable non-deterministic planning problems, and that an slight extension of this translation renders the problem solvable by means of classical planners. The whole approach is sound and complete provided that in addition, the state-space is connected. Experiments are also reported.
Resumo:
El present TFM té per objectiu aplicar tècniques d'intel·ligència artificial per analitzar la incidència de l'esforç d'alta intensitat en la generació d'IncRNA.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
El present TFM té per objectiu aplicar tècniques d'intel·ligència artificial per realitzar el seguiment de les extremitats dels ratolins i les vibrisses del seu musell. Aquest objectiu es deriva de la necessitat per part dels realitzadors d'experiments optogenètics de registrar els moviments dels ratolins.
Resumo:
DDM is a framework that combines intelligent agents and artificial intelligence traditional algorithms such as classifiers. The central idea of this project is to create a multi-agent system that allows to compare different views into a single one.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
In order to improve the management of copyright in the Internet, known as Digital Rights Management, there is the need for a shared language for copyright representation. Current approaches are based on purely syntactic solutions, i.e. a grammar that defines a rights expression language. These languages are difficult to put into practise due to the lack of explicit semantics that facilitate its implementation. Moreover, they are simple from the legal point of view because they are intended just to model the usage licenses granted by content providers to end-users. Thus, they ignore the copyright framework that lies behind and the whole value chain from creators to end-users. Our proposal is to use a semantic approach based on semantic web ontologies. We detail the development of a copyright ontology in order to put this approach into practice. It models the copyright core concepts for creation, rights and the basic kinds of actions that operate on content. Altogether, it allows building a copyright framework for the complete value chain. The set of actions operating on content are our smaller building blocks in order to cope with the complexity of copyright value chains and statements and, at the same time, guarantee a high level of interoperability and evolvability. The resulting copyright modelling framework is flexible and complete enough to model many copyright scenarios, not just those related to the economic exploitation of content. The ontology also includes moral rights, so it is possible to model this kind of situations as it is shown in the included example model for a withdrawal scenario. Finally, the ontology design and the selection of tools result in a straightforward implementation. Description Logic reasoners are used for license checking and retrieval. Rights are modelled as classes of actions, action patterns are modelled also as classes and the same is done for concrete actions. Then, to check if some right or license grants an action is reduced to check for class subsumption, which is a direct functionality of these reasoners.