907 resultados para Aorte--Calcification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officials during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44-56 mm), cuttlebones of CO2-incubated individuals accreted 22-55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2- exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 lm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 lm. Interestingly, the incorporation of non-acidsoluble organic matrix (chitin) in the cuttlebones of CO2- exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officials, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 -] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officials is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10?°C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decreases in seawater pH and carbonate saturation state (Omega) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimedaopuntia specimens that had been exposed to artificially elevated seawater pCO2 of 650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was 22 %/µm**2 higher and needle crystal dimensions 14 % longer. However, those needles were 42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Omega < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of microhabitat, organic matter flux, and metabolism on the stable oxygen and carbon isotope composition of live (Rose Bengal stained) and dead (empty tests) deep-sea benthic foraminifera from the Gulf of Lions (western Mediterranean Sea) have been studied. The total range of observed foraminiferal isotope values exceeds 1.0 per mil for d18O and 2.2 per mil for d13C demonstrating a wide range of coexisting disequilibria relative to d18O of equilibrium calcite (d18OEQ) and d13C of bottom water dissolved inorganic carbon (d13CDIC). The mean d18O values reveal strongest disequilibria for the studied epifaunal to shallow infaunal species (Cibicidoides pachydermus, Uvigerina mediterranea, Uvigerina peregrina) while values approach equilibrium in deep infaunal species (Globobulimina affinis, Globobulimina pseudospinescens). The mean d13C values decrease with increasing average living depths of the different species, thus reflecting a dominant microhabitat (pore water) signal. At the axis of the Lacaze-Duthier Canyon a minimum d13CDIC pore water gradient of approximately -2.1 per mil is assessed for the upper 6 cm of the surface sediment. Although live individuals of U. mediterranea were found in different depth intervals their mean d13C values are consistent with calcification at an average living depth around 1 cm. The deep infaunal occurrence of U. mediterranea specimens suggests association with macrofaunal burrows creating a microenvironment with geochemical characteristics similar to the topmost centimeter. This also explains the excellent agreement between stable isotope signals of live and dead individuals. The ontogenetic enrichment in both d18O and d13C values of U. mediterranea suggests a slow-down of metabolic rates during test growth similar to that previously observed in planktic foraminifera. Enhanced organic carbon fluxes and higher proportion of resuspended terrestrial organic material at the canyon axis are reflected by d13C values of U. mediterranea on average 0.58 per mil lower than those from the open slope. These results demonstrate the general applicability of the d13C signal of this species for the reconstruction of past organic matter fluxes in the Mediterranean Sea. Further studies on live specimens are needed for a more quantitative paleoceanographic approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron isotope systematics indicate that boron incorporation into foraminiferal CaCO3 is determined by the partition coefficient, KD = [B/Ca](CaCO3)/[B(OH)4**-/HCO3**-](seawater), and [B(OH)4?/HCO3?](seawater), providing, in principle, a method to estimate seawater pH and PCO2. We have measured B/Ca ratios in Globigerina bulloides and Globorotaliainflata for a series of core tops from the North Atlantic and the Southern Ocean and in Globigerinoides ruber (white) from Ocean Drilling Program (ODP) site 668B on the Sierra Leone Rise in the eastern equatorial Atlantic. B/Ca ratios in these species of planktonic foraminifera seem unaffected by dissolution on the seafloor. KD shows a strong species-specific dependence on calcification temperature, which can be corrected for using the Mg/Ca temperature proxy. A preliminary study of G. inflata from Southern Ocean sediment core CHAT 16K suggests that temperature-corrected B/Ca was ~30% higher during the last glacial. Correspondingly, pH was 0.15 units higher and aqueous PCO2 was 95 ?atm lower at this site at the Last Glacial Maximum. The covariation between reconstructed PCO2 and the atmospheric pCO2 from the Vostok ice core demonstrates the feasibility of using B/Ca in planktonic foraminifera for reconstructing past variations in pH and PCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.