945 resultados para Active power reserver for frequency control


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Bötzinger/pre-Bötzinger complexes (RVLM/BötC/pre-BötC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BötC/pre-BötC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BötC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 ± 0.02 vs. 1 ± 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 ± 2 vs. 82 ± 2%; P < 0.05; n = 8), but decreased postinspiratory (35 ± 3 vs. 12 ± 2%; P < 0.05) and late-expiratory (24 ± 4 vs. 2 ±1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 ± 6 vs. 40 ± 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 ± 8 vs. 26 ± 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BötC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BötC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BötC and RVLM/pre-BötC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BötC is essential to the coupling of active expiration and sympathoexcitatory response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel single-phase high power factor PWM boost rectifier, featuring soft commutation of the active switches at zero-current (ZCS). It incorporates the most desirable properties of the conventional PWM and the soft-switching resonant techniques. The input current shaping is achieved with average current mode control, and continuous inductor current mode. This new PWM converter provides ZCS turn-on and turn-off of the active switches, and it is suitable for high power applications employing IGBTs. Principle of operation, theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400 Vdc output voltage are presented. The measured efficiency and power factor were 96.2% and 0.99 respectively, with an input current THD equal to 3.94%, for an input voltage THD equal to 3.8%, at rated load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region. Methods: The study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old. Results: The results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area. Conclusions: The present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carvalho, FLP, Carvalho, MCGA, Simao, R, Gomes, TM, Costa, PB, Neto, LB, Carvalho, RLP, and Dantas, EHM. Acute effects of a warm-up including active, passive, and dynamic stretching on vertical jump performance. J Strength Cond Res 26(9): 2447-2452, 2012-The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 +/- 2.8 years; 175 +/- 5.6 cm; 64.0 +/- 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC x PSC x ASC x DC) revealed significant decreases for ASC (28.7 +/- 4.7 cm; p = 0.01) and PSC (28.7 +/- 4.3 cm; p = 0.02) conditions when compared with CC (29.9 +/- 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 +/- 4.9 cm; p = 0.02) with PSC (28.7 +/- 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 +/- 6.0 cm; p = 0.04) and DC (33.7 +/- 5.5 cm; p = 0.03) with PSC (32.6 +/- 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

United Nations on the Rights of the Sea (UNCLOS) and the Convention of Heritage Cultural and Natural of the Humanity.