1000 resultados para Accumulation rate, sediment, mean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed sediment from Ocean Drilling Program (ODP) Site 1144 in the northern South China Sea to examine the weathering response of SE Asia to the strengthening of the East Asian Monsoon (EAM) since 14 ka. Our high-resolution record highlights the decoupling between continental chemical weathering, physical erosion and summer monsoon intensity. Mass accumulation rates, Ti/Ca, K/Rb, hematite/goethite and 87Sr/86Sr show sharp excursions from 11 to 8 ka, peaking at 10 ka. Clay minerals show a shorter-lived response with a higher kaolinite/(illite + chlorite) ratio at 10.7-9.5 ka. However, not all proxies show a clear response to environmental changes. Magnetic susceptibility rises sharply between 12 and 11 ka. Grain-size becomes finer from 14 to 10 ka and then coarsens until ~7 ka, but is probably controlled by bottom current flow and sealevel. Sr and Nd isotopes show that material is dominantly eroded from Taiwan with a lesser flux from Luzon, while clay mineralogy suggests that the primary sources during the Early Holocene were reworked via the shelf in the Taiwan Strait, rather than directly from Taiwan. Erosion was enhanced during monsoon strengthening and caused reworking of chemically weathered Pleistocene sediment largely from the now flooded Taiwan Strait, which was transgressed by ~8 ka, cutting off supply to the deep-water slope. None of the proxies shows an erosional response lasting until ~6 ka, when speleothem oxygen isotope records indicate the start of monsoon weakening. Although more weathered sediments were deposited from 11 to 8 ka when the monsoon was strong these are reworked and represent more weathering during the last glacial maximum (LGM) when the summer monsoon was weaker but the shelves were exposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic sediment types have been identified based on a study of Core PS1599 collected from the eastern continental slope of the Weddell Sea. XRF analysis of 48 samples from this core carried out at the Vernadsky Institute of Geochemistry and Analytical Chemistry (Moscow) yielded the first comprehensive geochemical characteristics of all genetic types. Methods of correlation and factor analyses were used to outline geochemical associations of sediments and examine causes of their formation including the role of grain size composition. The results obtained have revealed fundamental differences between sources, mechanisms, and methods of transportation of sedimentary material for Holocene sediments, on the one hand, and Weichselian sediments, on the other hand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg/cm**2/kyr throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pelagic sedimentation in the northwest Indian Ocean has been studied using sediments from Hole 711A (the section from 0 to 70.5 mbsf, 0-22 Ma), a deep site (4428 m) drilled during Ocean Drilling Program Leg 115. The clay fraction of the sediments represents poorly developed pelagic deposits with considerably lower contents of Mn, Ba, Cu, Ni, Cr, and Zn than is typical for well-oxidized pelagic sediments formed far from the continents (e.g., in the central Indian or Pacific oceans). Geochemical provenance models, representing conservative mixing models with terrigenous, exhalative-volcanic, and biogenous matter as the only inputs, explain most of the compositional variations in the sediments. The models show that terrigenous matter accounts for about 96%-100% of all SiO2, Al2O3, TiO2, and Zr; about 73%-85% of all Fe2O3, V, and Ni; and about 40%-60% of the Cu and Zn abundances. Exhalative-volcanic matter delivers a large fra tion of Mn (78%-85%), some Fe (15%-219/o), and possibly some Cu (38%-51%). Biogenous deposition is generally of restricted significance; at most 6%-35% of all Cu and Zn may derive from biogenic matter. The exhalative-volcanic matter is slightly more abundant in the oldest deposits, reflecting a plate tectonic drift away from the volcanic Carlsberg Ridge. The Al/Ti ratio reveals that silicic crustal matter plays a somewhat larger role in the upper and lower part of the section studied, whereas the basaltic input is slightly higher in the intermediate levels (age 5-15 m.y.). The sediment abundances of Ba generally exceed those predicted by the models, an anomalous behavior also observed in equatorial Pacific sediments. This is possibly caused by poor knowledge of the input components. Several changes in accumulation rates seem to correlate with climatic changes (onset of monsoon-driven upwellings and sea-level regressions of about 50-100 m at 10, 15-16, and 20-21 Ma). A number of constituents show higher accumulation rates at or shortly after these regressions, suggesting an accelerated removal of fines from shallow oceanic areas. Furthermore, the SiO2/Al2O3 ratio shows a small increase in sediments younger than 10 Ma, implying an increase in biological productivity, particularly after the onset of monsoon-driven upwelling in the northwest Indian Ocean. This trend is paralleled by a general increase in the accumulation rates of Ba and CaCO3. However, these accumulation rates are generally significantly lower than under the biological high-productivity zone in the equatorial Pacific. The onset of these upwelling systems about 10 Ma is probably related to the closing of the gap between India and the main Asiatic continent, preventing free circulation around the Indian subcontinent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the processes controlling organic carbon deposition (i.e., primary productivity vs. terrigenous supply) and their paleoceanographic significance, three sediment cores (PS2471, PS2474. and PS2476) from the Laptev Sea continental margin were investigated for their content and composition of organic carbon. The characterization of organic matter indudes the determination of buk parameters (hydrogen index values and C/N ratios) and the analysis of specific biomarkers (n-alaknes, fatty acids, alkenones, and pigments). Total organic carbon (TOC) values vary between 0.3 and 2%. In general, the organic matter from the Laptev Sea continental margin is dominated by terrigenous matter throughout. However. significant amounts of marine organic carbon occur. The turbidites, according to a still preliminary stratigraphy probably deposited during glacial Oxygen Isotope Stages 2 and 4, are characterized by maximum amounts of organic carbon of terrigenous origin. Marine organic carbon appears to show enhanced relative abundances in the Termination I (?) and early Holocene time intervals, as indicated by maximum amounts of short chain n-alkanes, short-chain fatty acids, and alkenones. The increased amounts of faity acids, however, may also have a freshwater origin due to increased river discharge at that time. The occurrence of alkenones is suggested to indicate an intensification of Atlantic water inflow along the Eurasian continental margin starting at that time. Oxygen Isotope Stage l accumutation rates of total organic carhon are 0.3, 0.17, and 0.02 C/cm**2/ky in cores PS2476, PS2474, and PS2471, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This initial survey of pollen from 192 samples from Hole 794A, supplemented by 189 samples from Hole 795 and 797B, suggests that marine pollen assemblages from the southwestern Sea of Japan provide a consistent Neogene pollen stratigraphy and a solid basis for regional paleoenvironmental reconstructions. Late Miocene vegetation inferred from these pollen data, a mix of conifer and broad-leaf elements with now-extinct Tertiary types well represented, appears similar to Aniai-type floras of Japan. During the late Miocene through early Pliocene, as Tertiary types declined, conifers (including the Sequoia/Cryptomeria group) became more prominent than broad-leaf elements, and herbs played an increasing role in the vegetation. Middle Pliocene pollen assemblages imply significant changes in forest composition. In a 500,000-yr interval centered at ~4 m.y., Tertiary and warm-temperate deciduous types re-expanded and were comparable to or greater than middle-late Miocene levels. Temperate and cold-temperate conifers {Picea, Abies, Tsuga) were minimal. Subsequently, Tertiary and deciduous forest components (including Quercus) decreased, Picea, Tsuga, and Abies were again prominent, and herbs formed an increasingly larger part of the vegetation. Between ~3 m.y. and -2.5 m.y., conifers, except for Cryptomeria types, were prominent, Quercus continued to decline, and other broad-leaf trees were minor. Over the last 2 Ma, the very large and frequent changes in forest composition inferred from pollen in the Sea of Japan correspond to forest dynamics inferred from changes in pollen and floral assemblages throughout Japan. Given present vegetation/climate relationships, broad trends in Neogene climate inferred from these preliminary pollen data include decreasing temperatures, increasing seasonality in temperatures and precipitation, and increasing amplitude and frequency of climatic change. Two significant events, centered at ~9 m.y. and ~4 m.y., punctuate the gradual deterioration of the equable warm, humid subtropical/warm temperate late Miocene and early Pliocene climates. The first indication of cold-temperate conditions comparable to those of Pleistocene glacial intervals occurs ~3 m.y. Subsequently, regional climates oscillated rapidly between temperate and cold-temperate regimes that supported conifer and mixed broad-leaf forests; however, climatic extremes were apparently never great enough to displace warm-temperate and temperate forests from Honshu nor to produce arctic climates on the west coast of Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a geochemical study of bottom sediments from the Tadjura rift zone are reported. The sediments were analyzed for CaCO3, Si, Al, Ti, Fe, Mn, Cu, Zn, Ni, Co, Cr, V, Zr, Ga, Yb and Y. It was found that formation of chemical composition of the sediments was controlled by factors being appropriate for a near-continental area of the arid climatic zone (aeolian supply of terrigenous material and high biological productivity), as well as by hydrothermal activity in the rift valley. It was shown that high Mn contents were typical for the sediments in study while maximal contents of Fe were found near supposed hydrothermal sources. Total flux of Mn into sediments was been calculated. Diagenetic redistribution gives the main contribution of Mn in surface layer sediments. Speciations of Fe, Mn, Cu, Zn, Ni, Co, and Al were studied. In the surface layer sediments iron and manganese were in hydroxides. Model calculations of contents of chemical elements in sediments of the area in study are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic Ocean System is a key player regarding the climatic changes of Earth. Its highly sensitive ice Cover, the exchange of surface and deep water masses with the global ocean and the coupling with the atmosphere interact directly with global climatic changes. The output of cold, polar water and sea ice influences the production of deep water in the North Atlantic and controls the global ocean circulation ("the conveyor belt"). The Arctic Ocean is surrounded by the large Northern Hemisphere ice sheets which not only affect the sedimentation in the Arctic Ocean but also are supposed to induce the Course of glacials and interglacials. Terrigenous sediment delivered from the ice sheets by icebergs and meltwater as well as through sea ice are major components of Arctic Ocean sediments. Hence, the terrigenous content of Arctic Ocean sediments is an outstanding archive to investigate changes in the paleoenvironment. Glazigenic sediments of the Canadian Arctic Archipelago and surface samples of the Arctic Ocean and the Siberian shelf regions were investigated by means of x-ray diffraction of the bulk fraction. The source regions of distinct mineral compositions were to be deciphered. Regarding the complex circumpolar geology stable christalline shield rocks, active and ancient fold belts including magmatic and metamorphic rocks, sedimentary rocks and wide periglacial lowlands with permafrost provide a complete range of possible mineral combinations. Non- glaciated shelf regions mix the local input from a possible point source of a particular mineral combination with the whole shelf material and function as a sampler of the entire region draining to the shelf. To take this into account, a literature research was performed. Descriptions of outcropping lithologies and Arctic Ocean sediments were scanned for their mineral association. The analyses of glazigenic and shelf sediments yielded a close relationship between their mineral composition and the adjacent source region. The most striking difference between the circumpolar source regions is the extensive outcrop of carbonate rocks in the vicinity of the Canadian Arctic Archipelago and in N Greenland while siliciclastic sediments dominate the Siberian shelves. In the Siberian shelf region the eastern Kara Sea and the western Laptev Sea form a destinct region defined by high smectite, (clino-) pyroxene and plagioclase input. The source of this signal are the extensive outcrops of the Siberian trap basalt in the Putorana Plateau which is drained by the tributaries of the Yenissei and Khatanga. The eastern Laptev Sea and the East Siberian Sea can also be treated as one source region containing a feldspar, quartz, illite, mica, and chlorite asscciation combined with the trace minerals hornblende and epidote. Franz Josef Land provides a mineral composition rich in quartz and kaolinite. The diverse rock suite of the Svalbard archipelago distributes specific mineral compositions of highly metamorphic christalline rocks, dolomite-rich carbonate rocks and sedimentary rocks with a higher diagenetic potential manifested in stable newly built diagenetic minerals and high organic maturity. To reconstruct the last 30,000 years as an example of the transition between glacial and interglacial conditions a profile of sediment cores, recovered during the RV Polarstern" expedition ARK-VIIIl3 (ARCTIC '91), and additional sediment cores around Svalbard were investigated. Besides the mineralogy of different grain size fractions several additional sedimentological and organo-geochemical Parameterswere used. A detailed stratigraphic framework was achieved. By exploiting this data set changes in the mineral composition of the Eurasian Basin sediments can be related to climatic changes. Certain mineral compositions can even be associated with particular transport processes, e.g. the smectitel pyroxene association with sea ice transport from the eastern Kara Sea and the western Laptev Sea. Hence, it is possible to decipher the complex interplay between the influx of warm Atlantic waters into the Southwest of the Eurasian Basin, the waxing and waning of the Svalbard1Barents- Sea- and Kara-Sea-Ice-Sheets, the flooding of the Siberian shelf regions and the surface and deep water circulation. Until now the Arctic Ocean was assumed to be a rather stable System during the last 30,000 years which only switched from a completely ice covered situation during the glacial to seasonally Open waters during the interglacial. But this work using mineral assemblages of sediment cores in the vicinity of Svalbard revealed fast changes in the inflow of warm Atlantic water with the Westspitsbergen Current (< 1000 years), short periods of advances and retreats of the marine based Eurasian ice sheets (1000-3000 years), and short melting phases (400 years?). Deglaciation of the marine-based Eurasian and the land-based north American and Greenland ice sheets are not simultaneous. This thesis postulates that the Kara Sea Ice Sheet released an early meltwater signal prior to 15,000 14C years leading the Barents Sea Ice Sheet while the western land-based ice sheets are following later than 13,500 14C years. The northern Eurasian Basin records the shift between iceberg and sea-ice material derived from the Canadian Arctic Archipelago and N-Greenland and material transported by sea-ice and surface currents from the Siberian shelf region. The phasing of the deglaciation becomes very obvious using the dolomite and quartd phyllosilicate record. It is also supposed that the flooding of the Laptev Sea during the Holocene is manifested in a stepwise increase of sediment input at the Lomonosov Ridge between the Eurasian and Amerasian Basin. Depending on the strength of meltwater pulses from the adjacent ice sheets the Transpolar Drift can probably be relocated. These movements are traceable by the distribution of indicator minerals. Based on the outcome of this work the feasibility of bulk mineral determination can be qualified as excellent tool for paleoenvironmental reconstructions in the Arctic Ocean. The easy preparation and objective determination of bulk mineralogy provided by the QUAX software bears the potential to use this analyses as basic measuring method preceding more time consuming and highly specialised mineralogical investigations (e.g. clay mineralogy, heavy mineral determination).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive investigations of sedimentary barium were performed in the southern South Atlantic in order to assess the reliability of the barium signal in Antarctic sediments as a proxy for paleoproductivity. Maximum accumulation rates of excess barium were calculated for the Antarctic zone south of the polar front where silica accumulates at high rates. The correspondence between barium and opal supports the applicability of barium as a proxy for productivity. Within the Antarctic zone north of today's average sea ice maximum, interglacial vertical rain rates of excess barium are high, with a maximum occurring during the last deglaciation and early Holocene and during oxygen isotope chronozone 5.5. During these periods, the maximum silica accumulation was supposedly located south of the polar front. Glacial paleoproductivity, instead, was low within the Antarctic zone. North of the polar front, significantly higher barium accumulation occurs during glacial times. The vertical rain rates, however, are as high as in the glacial Antarctic zone. Therefore there was no evidence for an increased productivity in the glacial Southern Ocean.