991 resultados para Absorption coefficient, 525 nm
Resumo:
The predissociation decay behavior of molecule carbonyl sulfide (OCS) has been investigated by resonance-enhanced multiphoton ionization spectroscopy using the pump-probe technique of dichroic femtosecond lasers in real time. The lifetime of excited OCS around 74 720 cm(-1) by two-photon absorption of 268 nm, corresponding to upsilon(1)=1 of the Rydberg state [(2)Pi(1/2)]4ppi((1)Sigma(+)), is directly determined to be tau(D)=1071+/-11 fs. This picosecond decay process indicates that the excited state is predissociative. The temporal information of dissociation enriches the knowledge of the potential-energy surface of the associative excited state.
Resumo:
Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.
Resumo:
Lanthanide-doped sol-gel-derived materials are an attractive type of luminescent materials that can be processed at ambient temperatures. However, the solubility of the lanthanide complexes in the matrix is a problem and it is difficult to obtain a uniform distribution of the complexes. Fortunately, these problems can be solved by covalently linking the lanthanide complex to the sol-gel-derived matrix. In this study, luminescent Eu3+ and Tb3+ bipyridine complexes were immobilized on sol-gel-derived silica. FT-IR, DTA-TG and luminescence spectra, as well as luminescence decay analysis, were used to characterize the obtained hybrid materials. The organic groups from the bipyridine-Si moiety were mostly destroyed between 220 and 600 degreesC. The luminescence properties of lanthanide bipyridine complexes anchored to the backbone of the silica network and the corresponding pure complexes were comparatively investigated, which indicates that the lanthanide bipyridine complex was formed during the hydrolysis and co-condensation of TEOS and modified bipyridine. Excitation at the ligand absorption wavelength (336 nm for the hybrid materials and 350 nm for the pure complexes) resulted in strong emission of the lanthanide ions: Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) emission lines due to efficient energy transfer from the ligands to the lanthanide ions.
Resumo:
Novel hybrid thin films covalently doped with Eu3+ (Tb3+) have been prepared via direct routes involving co-condensation of tetraethoxysilane and phen-Si in the presence of Eu3+ (Tb3+) by spin-casting and their luminescence properties have been investigated in detail. Lanthanide ions can be sensitized by anchored phenanthroline in hybrid thin films. Excitation at the ligand absorption wavelength (272 nm) resulted in the strong emission of the lanthanide ions i.e. Eu3+ D-5(0)-F-7(J) (J=0, 1, 2, 3, 4) emission lines and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) due to the energy transfer from the ligands to the lanthanide ions.
Resumo:
Organo-functionalized MCM-41 containing non-covalently linked 1,10-phenanthroline (denoted as Phen-MCM-41) was synthesized by template-directed co-condensation of tetraethoxysilane and the modified phenanthroline (denoted as Phen-Si). XRD, FTIR, UV/VIS spectroscopy as well as luminescence spectroscopy were employed to characterize Phen-MCM-41. No disintegration or loss of the Phen-Si during the solvent extraction procedure could be observed. When monitored by the ligand absorption wavelength (272 nm), the undoped MCM-41 produces a broad band emission centered at 450 run, whereas europium (III) doped Phen-MCM-41 displays the emission of the Eu3+, i.e., D-5(0) --> F-7(J) (J = 0, 1, 2, 3, 4) transition lines due to the energy transfer from the ligands to Eu3+ as well as a broad band emission centered at 442 nm.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.
Resumo:
The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.
Resumo:
The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').
Resumo:
For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.
Resumo:
Rhodanines (2-thio-4-oxothiazolidines) are synthetic small molecular weight organic molecules with diverse applications in biochemistry, medicinal chemistry, photochemistry, coordination chemistry and industry. The X-ray crystal structure determination of two rhodanine derivatives, namely (I), 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine], C3H4N2OS2, and (II) 3-methylrhodanine [3-methyl-2-thio-4-oxothiazolidine], C4H5NOS2, have been conducted at 100 K. I crystallizes in the monoclinic space group P2(1)/n with unit cell parameters a = 9.662(2), b = 9.234(2), c = 13.384(2) angstrom, beta = 105.425(3)degrees, V = 1151.1(3) angstrom(3), Z = 8 (2 independent molecules per asymmetric unit), density (calculated) = 1.710 mg/m(3), absorption coefficient = 0.815 mm(-1). II crystallizes in the orthorhombic space group Iba2 with unit cell a = 20.117(4), b = 23.449(5), c = 7.852(2) angstrom, V = 3703.9(12) angstrom(3), Z = 24 (three independent molecules per asymmetric unit), density (calculated) = 1.584 mg/m(3), absorption coefficient 0.755 mm(-1). For I in the final refinement cycle the data/restraints/parameter ratios were 2639/0/161, goodness-of-fit on F-2 = 0.934, final R indices [I > 2sigma(I)] were R1 = 0.0299, wR2 = 0.0545 and R indices (all data) R1 = 0.0399, wR2 = 0.0568. The largest difference peak and hole were 0.402 and -0.259 e angstrom(-3). For II in the final refinement cycle the data/restraints/parameter ratios were 3372/1/221, goodness-of-fit on F(2) = 0.950, final R indices [I > 2sigma(I)] were R1 = 0.0407, wR2 = 0.1048 and R indices (all data) R1 = 0.0450, wR2 = 0.1088. The absolute structure parameter = 0.19(9) and largest difference peak and hole 0.934 and -0.301 e angstrom(-3). Details of the geometry of the five molecules (two for I and three for II) and the crystal structures are fully discussed. Corresponding features of the molecular geometry are highly consistent and firmly establish the geometry of the rhodanine
Resumo:
N-acetyl-L-glutamic acid, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 4.747(3), b = 12.852(7), c = 13.906(7) Å, V = 848.5(8) Å3, Z = 4, density (calculated) = 1.481 mg/m3, linear absorption coefficient 0.127 mm−1. The crystal structure determination was carried out with MoKalpha X-ray data measured with liquid nitrogen cooling at 100(2) K temperature. In the final refinement cycle the data/restraints/parameter ratios were 1,691/0/131; goodness-of-fit on F(2) = 1.122. Final R indices for [I > 2sigma(I)] were R1 = 0.0430, wR2 = 0.0878 and R indices (all data) R1 = 0.0473, wR2 = 0.0894. The largest electron density difference peak and hole were 0.207 and −0.154 eÅ(−3). Details of the molecular geometry are discussed and compared with a model DFT structure calculated using Gaussian 98.
Resumo:
This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A nonlinear equation of motion is found for the dimer comprising two charged H2O molecules. The THz dielectric response to nonharmonic vibration of a nonrigid dipole, forming the hydrogen bond (HB), is found in the direction transverse to this bond. An explicit expression is derived for the autocorrelator that governs the spectrum generated by transverse vibration (TV) of such a dipole. This expression is obtained by analytical solution of the truncated set of recurrence equations. The far infrared (FIR) spectra of ice at the temperature - 7 degrees C are calculated. The wideband, in the wavenumber (frequency) v range 0... 100.0 cm(-1), spectra are obtained for liquid water at room temperature and for supercooled water at -5.6 degrees C. All spectra are represented in terms of the complex permittivity epsilon(v) and the absorption coefficient alpha(v). The obtained analytical formula for epsilon comprises the term epsilon(perpendicular to) pertinent to the studied TV mechanism with three additional terms Delta epsilon(q), Delta epsilon(mu), and epsilon(or) arising, respectively, from: elastic harmonic vibration of charged molecules along the H-bond; elastic reorientation of HB permanent dipoles; and rather free libration of permanent dipoles in 'defects' of water/ice structure. The suggested TV-dielectric relaxation mechanism allows us: (a) to remove the THz 'deficit' of loss epsilon" inherent in previous theoretical studies; (b) to explain the THz loss and absorption spectra in supercooled (SC) water; and (c) to describe, in agreement with the experiment, the low- and high-frequency tails of the two bands of ice H2O located in the range 10...300 cm(-1). Specific THz dielectric properties of SC water are ascribed to association of water molecules, revealed in our study by transverse vibration of HB charged molecules. (C) 2006 Published by Elsevier B.V.