941 resultados para Absorption and emission cross-section
Resumo:
An analytical mathematical model for friction between a fabric strip and the volar forearm has been developed and validated experimentally. The model generalizes the common assumption of a cylindrical arm to any convex prism, and makes predictions for pressure and tension based on Amontons' law. This includes a relationship between the coefficient of static friction (mu) and forces on either end of a fabric strip in contact with part of the surface of the arm and perpendicular to its axis. Coefficients of friction were determined from experiments between arm phantoms of circular and elliptical cross-section (made from Plaster of Paris covered in Neoprene) and a nonwoven fabric. As predicted by the model, all values of mu calculated from experimental results agreed within +/- 8 per cent, and showed very little systematic variation with the deadweight, geometry, or arc of contact used. With an appropriate choice of coordinates the relationship predicted by this model for forces on either end of a fabric strip reduces to the prediction from the common model for circular arms. This helps to explain the surprisingly accurate values of mu obtained by applying the cylindrical model to experimental data on real arms.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.
Resumo:
Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.
Resumo:
This study has developed an improved subjective approach of classification in conjunction with Step wise DFA analysis to discriminate Chinese sturgeon signals from other targets. The results showed that all together 25 Chinese sturgeon echo-signals were detected in the spawning ground of Gezhouba Dam during the last 3 years, and the identification accuracy reached 90.9%. In Stepwise DFA, 24 out of 67 variables were applied in discrimination and identification. PCA combined with DFA was then used to ensure the significance of the 24 variables and detailed the identification pattern. The results indicated that we can discriminate Chinese sturgeon from other fish species and noise using certain descriptors such as the behaviour variables, echo characteristics and acoustic cross-section characteristics. However, identification of Chinese sturgeon from sediments is more difficult and needs a total of 24 variables. This is due to the limited knowledge about the acoustic-scattering properties of the substrate regions. Based on identified Chinese sturgeon individuals, 18 individuals were distributed in the region between the site of Gezhouba Dam and Miaozui reach, with a surface area of about 3.4 km(2). Seven individuals were distributed in the region between Miaozui and Yanshouba reach, with a surface area of about 13 km(2).
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.
Resumo:
We have studied the Fano resonance in photon-assisted transport through a quantum dot. Both the coherent current and the spectral density of shot noise have been calculated. It is predicted that the shape of the Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has also been investigated. We further predict the current and spectral density of shot noise as a periodic function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.
Resumo:
SOI (silicon-on-insulator) is a new material with a lot of important performances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2X2 thermal-optical switch were successfully designed and fabricated. Based on these, 4X4 and 8X8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.
Resumo:
Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.