939 resultados para AMORPHOUS POLYMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By reacting 4,4′-bipyridine (bpy) with selected trinuclear triangular CuII complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2(LL′)] [pz = pyrazolate anion; R = CH3, CH3CH2, CH2═CH, CH2═C(CH3); L, L′ = Hpz, H2O, MeOH] in MeOH, the substitution of monotopic ligands by ditopic bpy was observed. Depending on the stoichiometric reaction ratios, different compounds were isolated and structurally characterized. One- and two-dimensional coordination polymers (CPs), as well as two hexanuclear CuII clusters were identified. One of the hexanuclear clusters self-assembles into a supramolecular three-dimensional structure, and its crystal packing shows the presence of two intersecting channels, one of which is almost completely occupied by guest bpy, while in the second one guest water molecules are present. This compound also shows a reversible, thermally induced, single-crystal-to-single-crystal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of optimized deposition conditions for the inner wall coating of fused silica tubes with amorphous selenium was elaborated. The method is based on the vapor transport deposition of pure elemental selenium on a cooled substrate held at liquid nitrogen temperatures. Morphological and structural examination of the deposited layer was performed by optical microscopy and X-ray diffraction studies. Neutron activated selenium was used to monitor the deposition pattern and its stability under high gas flows. Monte Carlo simulations allowed the estimation of the different Se species composing the amorphous phase, at the given experimental deposition conditions. The versatility of the coating method presented in this work allows for the coating of tubes of different lengths and diameters, opening the way for several applications of amorphous selenium films in various fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a first experiment, a reactively sputtered amorphous Ta₄₂Si₁₃N₄₅ film about 260 nm thick deposited on a flat and smooth alumina substrate was thermally annealed in air for 30 min and let cooled again repeatedly at successively higher temperatures from 200 to 500 °C. This treatment successively and irreversibly increases the room temperature resistivity of the film monotonically from its initial value of 670 μΩ cm to a maximum of 705 μΩ cm (+5.2 %). Subsequent heat treatments at temperatures below 500 °C and up to 6 h have no further effect on the room temperature resistivity. The new value remains unchanged after 3.8 years of storage at room temperature. In a second experiment, the evolution of the initially compressive stress of a film similarly deposited by reactive sputtering on a 2-inch silicon wafer was measured by tracking the wafer curvature during similar thermal annealing cycles. A similar pattern of irreversible and reversible changes of stress was observed as for the film resistivity. Transmission electron micrographs and secondary ion mass profiles of the film taken before and after thermal annealing in air establish that both the structure and the composition of the film scarcely change during the annealing cycles. We reason that the film stress is implicated in the resistivity change. In particular, to interpret the observations, a model is proposed where the interface between the film and the substrate is mechanically unyielding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful bottom-up fill of single Damascene test features is achieved by using a two-component additive package consisting of bis-(sodium-sulfopropyl)-disulfide (SPS) and Imep polymers (polymerizates of imidazole and epichlorohydrin). In addition, a remarkable leveling effect is observed. Clearly, the Imep additive combines bottom-up fill capabilities with leveling characteristics in one single polymer component. These unique hybrid properties of the Imep are rationalized on the basis of an extended N-NDR (N-shaped negative differential resistance) being present in the linear-sweep voltammogram of the SPS/Imep additive system during Cu electrodeposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creation of biocompatible functional materials is an important task in supramolecular chemistry. In this contribution, we report on noncovalent synthesis of DNA-grafted supramolecular polymers (SPs). DNA-grafted SPs enable programmed arrangement of oligonucleotides in a regular, tightly packed one-dimensional array. Further interactions of DNA-grafted SPs with complementary DNA strands leads to the formation of networks through highly cooperative G-C blunt-end stacking interactions. The structural changes in the polymeric core enable to monitor spectroscopically the stepwise formation of networks. Such stimuli-responsive supramolecular networks may lead to the development of DNA-based smart materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.