934 resultados para AMMONIA-OXIDIZING ARCHAEA
Resumo:
Actualment a Catalunya existeixen zones amb importants limitacions per l’aplicació de purins al sòl, pel que és imprescindible trobar alternatives de gestió i tractament que permetin l’aprofitament adequat dels recursos continguts a les dejeccions ramaderes sense afectar el medi. La digestió anaeròbia és una de les tècniques utilitzades en el tractament de les dejeccions ramaderes. L’efluent líquid que s’obté d’aquest tractament no modifica el contingut de nitrogen i fòsfor i per tant ha de ser gestionat correctament. L’objectiu general d’aquest projecte és avaluar la precipitació d’estruvita (sal de magnesi, amoni i fosfat) com una alternativa de gestió de l’efluent líquid d’una planta de digestió anaeròbia i compostatge que tracta dejeccions ramaderes conjuntament amb altres residus orgànics. S’han avaluat els efectes dels diferents paràmetres operacionals en la formació d’estruvita (pH, temperatura, velocitat d’agitació, alcalinitat), mitjançant assaigs en discontinu amb solució sintètica. A continuació s’ha procedit a obtenir estruvita a partir de la fracció líquida digerida de purí (FLD), en assaigs en discontinu per estudiar l’efecte del contingut de matèria orgànica i sòlids Totals (ST), així com el contingut en fosfats i el pH de reacció. Finalment, s’han optimitzat els paràmetres de procés en continu, mitjançant la posada en marxa d’un reactor a escala de laboratori i estudi de l’efecte de la velocitat d’agitació i de la introducció del stripping de CO2, tant amb solució sintètica com amb la fracció líquida digerida del purí. Dels resultats obtinguts es pot concloure que els factors que tenen una major influència en el procés d’obtenció d’estruvita són el pH (el pH òptim es situa al voltant de 9), i la presència de matèria orgànica i sòlids ens suspensió, que interfereix de forma quantitativa i qualitativa en la formació de l’estruvita. En el procés en continu s’ha aconseguit reduccions d’un 84% i 98% d’amoni i fòsfor respectivament, obtenintse estruvita que pot ser utilitzada com a fertilitzant d’alliberació lenta. Es pot concloure que la precipitació d’estruvita és una bona alternativa per millorar la gestió de les dejeccions ramaderes alhora que permet recuperar nutrients i tancar cicles. La combinació amb un tractament previ que elimini la matèria orgànica, com podria ser la digestió anaeròbia, i una separació de fases, per eliminar els sòlids en suspensió, es presenta com una configuració amb molts avantatges.
Resumo:
In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.
Resumo:
Iowa agriculture depends on anhydrous ammonia as a low-cost form of nitrogen fertilizer on 61 percent of Iowa’s 12.4 million acres of corn. Now we find a threat to that source of nutrient—the theft of anhydrous ammonia for use in making a powerful, illegal narcotic called methamphetamine. Naturally, the fertilizer industry is outraged by the illegal and illicit use of our products. We want to play a role in preventing abuse in the future. By raising awareness, knowing how to respond and using the Meth Inhibitor, fertilizer dealers can assist law enforcement in combating this illicit use of a product important to Iowa farmers.
Resumo:
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.
Resumo:
PURPOSE: The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). METHODS: Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with N-ammonia and F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to N-ammonia activity ratios. RESULTS: Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p < 0.001) and to normals (0.63 ± 0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p < 0.05) and stress (p < 0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p < 0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40 ± 0.14 vs 0.90 ± 0.20, p < 0.001) and in nonviable regions (1.13 ± 0.21, p < 0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r =-0.424, p < 0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. CONCLUSION: As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.
Resumo:
The Virulundo carbonatite in Angola, one of the biggest in the world, contains pyrochlore as an accessory mineral in all of the carbonatite units (calciocarbonatites, ferrocarbonatites, carbonatite breccias, trachytoids). The composition of the primary pyrochlore crystals is very close to fluornatrocalciopyrochlore in all these units. High-temperature hydrothermal processes caused the pseudomorphic replacement of the above crystals by a second generation of pyrochlore, characterized by lower F and Na contents. Low-temperature hydrothermal replacement of the above pyrochlores, associated with production of quartz-carbonates-fluorite veins, controled the development of a third generation of pyrochlore, characterized by high Sr contents. Finally, supergene processes produced the development of a secondary paragenesis in the carbonatite, consisting in late carbonates, goethite, hollandite and REE minerals (mainly synchysite-(Ce), britholite-(Ce), britholite-(La), cerite-(Ce)). Separation of Ce from the other REE was allowed by oxidizing conditions. Therefore, Ce4+ was also incorporated into a late generation of pyrochlore, which is also strongly enriched in Ba and strongly depleted in Ca and Na
Effects of long-term estrogen replacement therapy in postmenopausal women with coronary risk factors
Resumo:
Objective: Hormone replacement therapy (HRT) with estrogen alone or in concert with progesterone may exert beneficial effects on coronary endothelium-dependent vasomotion in postmenopausal women without traditional coronary risk factors. We aimed to evaluate the effect of HRT on coronary vasomotor function in postmenopausal women with traditional coronary risk factors such as hypertension, hypercholesterolemia and smoking as compared to those without HRT. Methods: Combining N-13 ammonia with PET, myocardial blood flow (MBF) was measured in ml/g/min at rest, during cold pressor test (CPT, reflecting predominantly endothelium-dependent vasomotion)and during pharmacologic vasodilation (representing predominantly endothelium-independent vasomotion) in 48 postmenopausal women with various coronary risk factors during a mean follow up (FU) of 20_9 months. postmenopausal women wer grouped according to HRT: group 1 with HRT (n_18), group 2 without HRT (n_18) and group 3 with HRT at baseline but not at FU (n_12). Results: during FU, HRT did not significantly affect lipid profile and plasma glucose levels. At baseline resting MBF was similar between groups (Table).After the FU, in group 2 and 3 the endothelium-related increase in MBF from rest to CPT (_ MBF) was significantly less than at baseline (*p_0.05) (Table). Conversely, in group 1 _MBF to CPT at FU was not significantly different from the baseline study. The group comparison of CPT-induced _MBF in group 2 and group 3 after the FU period was significantly different from group 1 (p_0.006 by ANOVA). Finally, in all three groups, hyperemic MBFs during pharmacologic vasodilation did not differ significantly between baseline and FU (Table). Conclusion: In postmenopausal women with coronary risk factors, HRT may counterbalance the adverse effects of traditional coronary risk factors on endothelium-dependent coronary vasomotion. Consequently, in addition to standard management of coronary risk factors, HRT may exert beneficial effects on the coronary endothelium that may delay the progression of coronary artery disease in postmenopausal women.
Resumo:
Sulfur in the soil occurs in two basic forms, organic and inorganic S. The organic form accounts for 95 % of S in most soils. The effectiveness of organic S to oxidate to sulfate was evaluated for total S determination in soil samples by wet (acid) and dry-ash (alkaline) oxidation methods. To evaluate the wet method and the possible use as a reference when evaluating the dry method proposed here, a reference standard from the US National Institute of Standards and Technology (NIST) was used (Montana Soil - NIST 2710). The dry-ash oxidation process with alkaline oxidizing agents is one of the simplest oxidation methods of organic S to the sulfate form and was compared with the wet process. The objective of the study was to develop a dry method that would be easy to apply and allow the complete conversion of organic S to sulfate in soil samples and later detection by turbidimetry. The effectiveness of organic S oxidation to sulfate was evaluated by means of three alkaline oxidation mixtures: NaHCO3 + Ag2O, Eschka mixture (17 % Na2CO3, 66 % MgO, and 17 % K2CO3), and NaHCO3 + CuO. The procedure to quantify the sulfate concentration was based on the reaction with barium chloride and turbidimetric detection. Sulfur quantification in the standard sample by the wet method proved adequate, precise and accurate. It should also be pointed out that no significant differences were found (95 % reliability) between the wet and dry processes (NaHCO3 and Ag2O oxidation mixture) in six different Brazilian soils. The proposed dry method can therefore be used in the preparation of soil samples for total S determination.
Resumo:
A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.
Resumo:
Nitrate reductase is the first enzyme in the pathway of nitrate reduction by plants, followed by glutamine synthetase, which incorporates ammonia to glutamine. The purpose of this study was to evaluate the nitrate reductase and glutamine synthetase activity, total soluble protein content, N and Ni content in coffee leaves during fruit development under field conditions to establish new informations to help assess the N nutritional status and fertilizer management. The experimental design was in randomized complete blocks, arranged in a 3 x 6 factorial design, with five replications. The treatments consisted of 3 N rates (0 - control, 150 and 300 kg ha-1) and six evaluation periods (January, February, March, April, May, and June) in six-year-old coffee (Coffea arabica L.) plants of Catuaí Vermelho IAC 44 cv. The nitrate reductase and glutamine synthetase activities, leaf soluble protein, and N concentrations increased linearly with the N rates. During fruit development, the enzyme activity, leaf soluble protein and N content decreased, due to the leaf senescence process caused by nutrient mobilization to other organs, e.g, to the berries. Leaf Ni increased during fruit development. Beans and raisin-fruits of plants well-supplied with N had higher Ni contents. Enzyme activities, total leaf N and leaf soluble protein, evaluated during the green fruit stage in March, were significantly correlated with coffee yield. These variables can therefore be useful for an early assessment of the coffee N nutritional status as well as coffee yield and N fertilization management.
Resumo:
Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.
The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires
Resumo:
The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.
Resumo:
The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.
Resumo:
Glutamine synthetase (GS) catalyses the ATP-dependent formation of glutamine from glutamate and ammonia. To determine whether dorsal root ganglion (DRG) cells from chick embryos express the enzyme in vivo or in vitro, GS was detected by immunocytochemical reaction either in vibratome sections of DRG or in dissociated DRG cell cultures. The immunocytochemical detection of GS showed that in vivo the DRG taken from chick embryos at day 10 (E10), E14, E18 or from chickens after hatching were free of any GS-positive ganglion cells; in contrast, in neuron-enriched cultures of DRG cells grown in vitro at E10, virtually all the neuronal cells (98.6 +/- 1.0%) express GS at 3, 5 or 7 days of culture. In mixed DRG cell cultures, only 83.6+/-4.6% of the neurons displayed a GS-immunoreactivity. In both culture conditions, neither the presence of horse serum nor the age of the culture appeared to affect the percentage of neurons which displayed a GS-immunoreactivity. After [3H]glutamine uptake, radioautographs revealed that only 80% of the neurons were labelled in neuron-enriched DRG cell cultures while 96% of the neurons were radioactive in mixed DRG cell cultures. Furthermore the most heavily [3H]glutamine-labelled neurons were exclusively found in mixed DRG cell cultures. Combination of both immunocytochemical detection of GS and radioautography after [3H]glutamine uptake showed that strongly GS-immunostained neurons corresponded to poorly radioactive ones and vice versa. When skeletal muscle extract (ME) was added to DRG cell cultures, the number of GS-positive neurons was reduced to 77.5 +/- 2.5% in neuron-enriched cultures or to 43.6 +/- 3.8% in mixed DRG cell cultures; in both types of culture, the intensity of the neuronal immunostaining was depressed. Furthermore, combined action of ME and non-neuronal cells potentiates the enzyme repression exerted separately by ME or non-neuronal cells. Since GS-immunoreactivity is expressed in DRG cells grown in vitro, but not in vivo, it is suggested that microenvironmental factors influence the expression of GS. More specifically, the repression of GS by primary sensory neurons grown in vitro may be strongly induced by soluble factors present in skeletal muscle, and to a lesser extent in brain, and potentiated by non-neuronal cells.
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.