999 resultados para ALTERED SUPPORT
Resumo:
Summary
Resumo:
BACKGROUND: Human saphenous vein grafts are one of the salvage bypass conduits when endovascular procedures are not feasible or fail. Understanding the remodeling process that venous grafts undergo during exposure to arterial conditions is crucial to improve their patency, which is often compromised by intimal hyperplasia. The precise role of hemodynamic forces such as shear stress and arterial pressure in this remodeling is not fully characterized. The aim of this study was to determine the involvement of arterial shear stress and pressure on vein wall remodeling and to unravel the underlying molecular mechanisms. METHODS: An ex vivo vein support system was modified for chronic (up to 1 week), pulsatile perfusion of human saphenous veins under controlled conditions that permitted the separate control of arterial shear stress and different arterial pressure (7 mm Hg or 70 mm Hg). RESULTS: Veins perfused for 7 days under high pressure (70 mm Hg) underwent significant development of a neointima compared with veins exposed to low pressure (7 mm Hg). These structural changes were associated with altered expression of several molecular markers. Exposure to an arterial shear stress under low pressure increased the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 at the transcript, protein, and activity levels. This increase was enhanced by high pressure, which also increased TIMP-2 protein expression despite decreased levels of the cognate transcript. In contrast, the expression of plasminogen activator inhibitor-1 increased with shear stress but was not modified by pressure. Levels of the venous marker Eph-B4 were decreased under arterial shear stress, and levels of the arterial marker Ephrin-B2 were downregulated under high-pressure conditions. CONCLUSIONS: This model is a valuable tool to identify the role of hemodynamic forces and to decipher the molecular mechanisms leading to failure of human saphenous vein grafts. Under ex vivo conditions, arterial perfusion is sufficient to activate the remodeling of human veins, a change that is associated with the loss of specific vein markers. Elevation of pressure generates intimal hyperplasia, even though veins do not acquire arterial markers. CLINICAL RELEVANCE: The pathological remodeling of the venous wall, which leads to stenosis and ultimately graft failure, is the main limiting factor of human saphenous vein graft bypass. This remodeling is due to the hemodynamic adaptation of the vein to the arterial environment and cannot be prevented by conventional therapy. To develop a more targeted therapy, a better understanding of the molecular mechanisms involved in intimal hyperplasia is essential, which requires the development of ex vivo models of chronic perfusion of human veins.
Resumo:
Traditionally, the analysis of gene regulatory regions suffered from the caveat that it was restricted to artificial contexts (e.g. reporter constructs of limited size). With the advent of the BAC recombineering technique, genomic constructs can now be generated to test regulatory elements in their endogenous environment. The expression of the transcriptional repressor brinker (brk) is negatively regulated by Dpp signaling. Repression is mediated by small sequence motifs, the silencer elements (SEs), that are present in multiple copies in the regulatory region of brk. In this work, we manipulated the SEs in the brk locus. We precisely quantified the effects of the individual SEs on the Brk gradient in the wing disc by employing a 1D data extraction method, followed by the quantification of the data with reference to an internal control. We found that mutating the SEs results in an expansion of the brk expression domain. However, even after mutating all predicted SEs, repression could still be observed in regions of maximal Dpp levels. Thus, our data point to the presence of additional, low affinity binding sites in the brk locus.
Resumo:
There have been a multitude of programs providing assistance to the state of Iowa in the past 18 months. Springtime 2008 disasters resulted in tornado damage and widespread flood damage to large fractions of the state. In consequence, there was a very large flow of federal and state resources dedicated to assisting community and statewide recovery efforts. The nation was in recession as well and continued to be in recession through much of 2009. A sizeable amount of assistance found its way to Iowa under the American Recovery and Reinvestment Act of 2009 in the forms of infrastructure stimulus spending, income supports and other safety net spending for households, and stabilization assistance for essential public services like education. On top of that, the state of Iowa authorized the I Jobs program as an additional infrastructure development program, and as a jobs stimulus program. The total amount of spending for all types of programs, disaster or economic recovery related, is perhaps as high as $7.5 billion over the next few years.
Resumo:
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
Resumo:
OBJECTIVE: To evaluate the feasibility and effects of non-invasive pressure support ventilation (NIV) on the breathing pattern in infants developing respiratory failure after extubation. DESIGN: Prospective pilot clinical study; each patient served as their own control. SETTING: A nine-bed paediatric intensive care unit of a tertiary university hospital. PATIENTS: Six patients (median age 5 months, range 0.5-7 months; median weight 4.2 kg, range 3.8-5.1 kg) who developed respiratory failure after extubation. INTERVENTIONS: After a period of spontaneous breathing (SB), children who developed respiratory failure were treated with NIV. MEASUREMENTS AND RESULTS: Measurements included clinical dyspnoea score (DS), blood gases and oesophageal pressure recordings, which were analysed for respiratory rate (RR), oesophageal inspiratory pressure swing (dPes) and oesophageal pressure-time product (PTPes). All data were collected during both periods (SB and NIV). When comparing NIV with SB, DS was reduced by 44% (P < 0.001), RR by 32% (P < 0.001), dPes by 45% (P < 0.01) and PTPes by 57% (P < 0.001). A non-significant trend for decrease in PaCO(2) was observed. CONCLUSION: In these infants, non-invasive pressure support ventilation with turbine flow generator induced a reduction of breathing frequency, dPes and PTPes, indicating reduced load of the inspiratory muscles. NIV can be used with some benefits in infants with respiratory failure after extubation.
Resumo:
The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement projects encountering 13,000- to 150-year-old Native American sites. This project identifies critical variables for assessing prehistoric sites potential, examines the quality of available data about the variables, and applies the data to creating a decision support framework for use by the Iowa Department of Transportation (Iowa DOT) and others. An analysis of previous archaeological surveys indicates that subsurface testing to discover buried sites became increasingly common after 1980, but did not become routine until after the adoption of guidelines recommending such testing, in 1993. Even then, the average depth of testing has been relatively shallow. Alluvial deposits of sufficient age, deposited in depositional environments conducive to human habitation, are considerably thicker than archaeologists have routinely tested.
Resumo:
Extracorporeal life support systems (ECLS) have become common in cardiothoracic surgery, but are still "Terra Incognita" in other medical fields due to the fact that perfusion units are normally bound to cardiothoracic centres. The Lifebridge B2T is an ECLS that is meant to be used as an easy and fast-track extracorporeal cardiac support to provide short-term perfusion for the transport of a patient to a specialized centre. With the Lifebridge B2T it is now possible to provide extracorporeal bypass for patients in hospitals without a perfusion unit. The Lifebridge B2T was tested on three calves to analyze the handling, performance and security of this system. The Lifebridge B2T safely can be used clinically and can provide full extracorporeal support for patients in cardiac or pulmonary failure. Flows up to 3.9 +/- 0.2l/min were reached, with an inflow pressure of -103 +/- 13mmHg, using a 21Fr. BioMedicus (Medtronic, Minneapolis, MN, USA) venous cannula. The "Plug and Play" philosophy, with semi-automatic priming, integrated check-list, a long battery time of over two hours and instinctively designed user interface, makes this device very interesting for units with high-risk interventions, such as catheterisation labs. If a system is necessary in an emergency unit, the Lifebridge can provide a high security level, even in centres not acquainted with cardiopulmonary bypass.
Resumo:
Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission.
Resumo:
Référence bibliographique : Weigert, 624
Resumo:
Vessel wall trauma induces vascular remodeling processes including the development of intimal hyperplasia (IH). To assess the development of IH in human veins, we have used an ex vivo vein support system (EVVSS) allowing the perfusion of freshly isolated segments of saphenous veins in the presence of a pulsatile flow which reproduced arterial conditions regarding shear stress, flow rate and pressure during a period of 7 and 14 days. Compared to the corresponding freshly harvested human veins, histomorphometric analysis showed a significant increase in the intimal thickness which was already maximal after 7 days of perfusion. Expression of the endothelial marker CD31 demonstrated the presence of endothelium up to 14 days of perfusion. In our EVVSS model, the activity as well as the mRNA and protein expression levels of plasminogen activator inhibitor 1, the inhibitor of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA), were increased after 7 days of perfusion, whereas the expression levels of tPA and uPA were not altered. No major change was observed between 7 and 14 days of perfusion. These data show that our newly developed EVVSS is a valuable setting to study ex vivo remodeling of human veins submitted to a pulsatile flow.