971 resultados para AGE ESTIMATION
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).
Resumo:
The use of hierarchical Bayesian spatial models in the analysis of ecological data is increasingly prevalent. The implementation of these models has been heretofore limited to specifically written software that required extensive programming knowledge to create. The advent of WinBUGS provides access to Bayesian hierarchical models for those without the programming expertise to create their own models and allows for the more rapid implementation of new models and data analysis. This facility is demonstrated here using data collected by the Missouri Department of Conservation for the Missouri Turkey Hunting Survey of 1996. Three models are considered, the first uses the collected data to estimate the success rate for individual hunters at the county level and incorporates a conditional autoregressive (CAR) spatial effect. The second model builds upon the first by simultaneously estimating the success rate and harvest at the county level, while the third estimates the success rate and hunting pressure at the county level. These models are discussed in detail as well as their implementation in WinBUGS and the issues arising therein. Future areas of application for WinBUGS and the latest developments in WinBUGS are discussed as well.
Resumo:
Background There are few data regarding the effectiveness of remote monitoring for older people with heart failure. We conducted a post-hoc sub-analysis of a previously published large Cochrane systematic review and meta-analysis of relevant randomized controlled trials to determine whether structured telephone support and telemonitoring were effective in this population. Methods A post hoc sub-analysis of a systematic review and meta-analysis that applied the Cochrane methodology was conducted. Meta-analyses of all-cause mortality, all-cause hospitalizations and heart failure-related hospitalizations were performed for studies where the mean or median age of participants was 70 or more years. Results The mean or median age of participants was 70 or more years in eight of the 16 (n=2,659/5,613; 47%) structured telephone support studies and four of the 11 (n=894/2,710; 33%) telemonitoring studies. Structured telephone support (RR 0.80; 95% CI=0.63-1.00) and telemonitoring (RR 0.56; 95% CI=0.41-0.76) interventions reduced mortality. Structured telephone support interventions reduced heart failure-related hospitalizations (RR 0.81; 95% CI=0.67-0.99). Conclusion Despite a systematic bias towards recruitment of individuals younger than the epidemiological average into the randomized controlled trials, older people with heart failure did benefit from structured telephone support and telemonitoring. These post-hoc sub-analysis results were similar to overall effects observed in the main meta-analysis. While further research is required to confirm these observational findings, the evidence at hand indicates that discrimination by age alone may be not be appropriate when inviting participation in a remote monitoring service for heart failure.
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.
Resumo:
This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distribution networks, pseudo-measurements is modeled as loads with the realistic errors. Simulation results on 6-bus radial and 34-bus IEEE test distribution networks show that the distribution state estimation based on proposed DLM-PSO presents lower estimation error and standard deviation in comparison with algorithms such as WLS, GA, HBMO, and original PSO.
Resumo:
Background: Recent evidence indicates that gene variants related to carotenoid metabolism play a role in the uptake of macular pigments lutein (L) and zeaxanthine (Z). Moreover, these pigments are proposed to reduce the risk for advanced age-related macular degeneration (AMD). This study provides the initial examination of the relationship between the gene variants related to carotenoid metabolism, macular pigment optical density (MPOD) and their combined expression in healthy humans and patients with AMD. Participants and Methods: Forty-four participants were enrolled from a general population and a private practice including 20 healthy participants and 24 patients with advanced (neovascular) AMD. Participants were genotyped for the three single nucleotide polymorphisms (SNPs) upstream from BCMO1, rs11645428, rs6420424 and rs6564851 that have been shown to either up or down regulate beta-carotene conversion efficiency in the plasma. MPOD was determined by heterochromatic flicker photometry. Results: Healthy participants with the rs11645428 GG genotype, rs6420424 AA genotype and rs6564851 GG genotype all had on average significantly lower MPOD compared to those with the other genotypes (p < 0.01 for all three comparisons). When combining BCMO1 genotypes reported to have “high” (rs11645428 AA/rs6420424 GG/rs6564851 TT) and “low” (rs11645428 GG/rs6420424 AA/rs6564851 GG) beta-carotene conversion efficiency, we demonstrate clear differences in MPOD values (p<0.01). In patients with AMD there were no significant differences in MPOD for any of the three BCMO1 gene variants. Conclusion: In healthy participants MPOD levels can be related to high and low beta-carotene conversion BCMO1 genotypes. Such relationships were not found in patients with advanced neovascular AMD, indicative of additional processes influencing carotenoid uptake, possibly related to other AMD susceptibility genes. Our findings indicate that specific BCMO1 SNPs should be determined when assessing the effects of carotenoid supplementation on macular pigment and that their expression may be influenced by retinal disease.
Resumo:
Persistent organic pollutants (POPs) such as dioxins, PCBs, persistent organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) as well as perfluorinated compounds (PFCs) and triclosan are ubiquitous in the human population. In Australia, we have pooled and subsequently analysed over 10 000 human serum samples for the determination of these chemicals by age group (0–0.5; 0.6–1; 1.1–1.5; 1.6–2; 2.1–2.5; 2.6–3; 3.1–3.5; 3.6–4; 4.1–6; 6.1–9; 9.1–12; 12.1–15; 16–30; 31–45; 46–60 and >60 years) and gender. The results of this analysis were then used to assess the trends of these different chemicals as a function of age, gender and to a lesser extent region. Our data demonstrate clear chemical specific age trends. In particular we demonstrate that for the traditional POPs there is an increase in body burden with age whereas the opposite is true for chemicals such as PBDEs. For PFCs we find chemical specific age trends that vary from compound to compound. For triclosan we show that no apparent age trend is observable. The results of the study and its implications to the collection and archiving of samples for retrospective analysis are discussed.
Resumo:
In 1999 the global recorded music industry had experienced a period of growth that had lasted for almost a quarter of a century. Approximately one billion records were sold worldwide in 1974, and by the end of the century, the number of records sold was more than three times as high. At the end of the nineties, spirits among record label executives were high and few music industry executives at this time expected that a team of teenage Internet hackers, led by Shawn Fanning (at the time a student at Northeastern University in Boston) would ignite the turbulent process that eventually would undermine the foundations of the industry.
Resumo:
Espionage, surveillance and clandestine operations by secret agencies and governments were something of an East–West obsession in the second half of the twentieth century, a fact reflected in literature and film. In the twenty-first century, concerns of the Cold War and the threat of Communism have been rearticulated in the wake of 9/11. Under the rubric of ‘terror’ attacks, the discourses of security and surveillance are now framed within an increasingly global context. As this article illustrates, surveillance fiction written for young people engages with the cultural and political tropes that reflect a new social order that is different from the Cold War era, with its emphasis on spies, counter espionage, brainwashing and psychological warfare. While these tropes are still evident in much recent literature, advances in technology have transformed the means of tracking, profiling and accumulating data on individuals’ daily activities. Little Brother, The Hunger Games and Article 5 reflect the complex relationship between the real and the imaginary in the world of surveillance and, as this paper discusses, raise moral and ethical issues that are important questions for young people in our age of security.
Resumo:
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The human lens nucleus is formed in utero, and from birth onwards, there appears to be no significant turnover of intracellular proteins or membrane components. Since, in adults, this region also lacks active enzymes, it offers the opportunity to examine the intrinsic stability of macromolecules under physiological conditions. Fifty seven human lenses, ranging in age from 12 to 82 years, were dissected into nucleus and cortex, and the nuclear lipids analyzed by electrospray ionization tandem mass spectrometry. In the first four decades of life, glycerophospholipids (with the exception of lysophosphatidylethanolamines) declined rapidly, such that by age 40, their content became negligible. In contrast the level of ceramides and dihydroceramides, which were undetectable prior to age 30, increased approximately 100-fold. The concentration of sphingomyelins and dihydrosphingomyelins remained unchanged over the whole life span. As a consequence of this marked alteration in composition, the properties of fiber cell membranes in the centre of young lenses are likely to be very different from those in older lenses. Interestingly, the identification of age 40 years as a time of transition in the lipid composition of the nucleus coincides with previously reported macroscopic changes in lens properties (e.g., a massive age-related increase in lens stiffness) and related pathologies such as presbyopia. The underlying reasons for the dramatic change in the lipid profile of the human lens with age are not known, but are most likely linked to the stability of some membrane lipids in a physiological environment.