991 resultados para AFFERENT-PROJECTIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroretinitis (NR) is an inflammatory disorder characterized by optic disc edema and subsequent formation of a macular star figure. The underlying pathophysiology involves increased permeability of disc vasculature, but the etiology is not fully defined. In some cases, NR is probably due to an infectious process involving the disc; in others, a postviral or autoimmune mechanism is more likely. Cases can be divided into those in which a specific infectious agent has been identified, those considered idiopathic, and those with recurrent attacks. Some reports have not distinguished among these subgroups, and it is unclear if their clinical features vary. We reviewed the literature and our own patients looking particularly at features that might better distinguish these subtypes. Features common to all 3 groups included age, absence of pain, and fundus appearance. Preceding systemic symptoms were more common in patients with cat scratch disease (CSD) and uncommon in those with recurrence. The pattern and magnitude of visual field loss differed, more commonly confined to the central field in CSD cases and more severe in recurrent cases. Recovery of visual acuity and field was less substantial in recurrent cases even after the initial episode. MRI was usually normal in all 3 groups. Enhancement confined to the optic disc was found in all 3 groups, but enhancement of the retrobulbar optic nerve was seen only in recurrent cases. Findings that are strongly suggestive of CSD include very young age, preceding systemic symptoms, and poor visual acuity but with a small or absent relative afferent pupil defect (RAPD). In contrast, the following are suggestive of idiopathic NR with a high risk of recurrence: absence of systemic symptoms, visual field defect outside the central field, preserved visual acuity with a large RAPD, and poor recovery of vision. Decisions regarding evaluation and treatment should be made with these features in mind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treating human melanoma lines with dibutyryl adenosine 3':5'-cyclic monophosphate (dbc AMP) resulted in morphologic changes associated with the altered expression of cell surface antigens. After treatment, cells developed long cellular projections characteristic of mature melanocytes and showed the presence of an increased number of Stage II premelanosomes. In addition, induction of melanin synthesis, detected as brown perinuclear pigmentation, was observed. The AMP further drastically reduced the growth rate of the five melanoma cell lines that were tested. The influence of dbc AMP was completely reversible 3 days after the agent was removed from the culture medium. The antigenic phenotype of the melanoma lines was compared before and after dbc AMP treatment. This was done with four monoclonal antibodies directed against major histocompatibility complex (MHC) Class I and II antigens and 11 monoclonal antibodies defining eight different melanoma-associated antigenic systems. Treatment with dbc AMP reduced the expression of human leukocyte antigen (HLA)-ABC antigens and beta-2-microglobulin in five of five melanoma lines. In the two HLA-DR-positive cell lines dbc AMP reduced the expression of this antigen in one line and enhanced it in the other. No induction of HLA-DR or HLA-DC antigens was observed in the Class II negative cell lines. Furthermore, dbc-AMP modulated the expression of the majority of the melanoma antigenic systems tested. The expression of a 90-kilodalton (KD) antigen, which has been found to be upregulated by interferon-gamma, was markedly decreased in all the five cell lines. A similar decrease in the expression of the high molecular weight proteoglycan-associated antigen (220-240 KD) was observed. The reduced expression of Class I and II MHC antigens as well as the altered expression of the melanoma-associated antigens studied were shown to be reversible after dbc AMP was removed. Our results collectively show that the monoclonal antibody-defined melanoma-associated molecules are linked to differentiation. They could provide useful tools for monitoring the maturation of melanomas in vivo induced by chemical agents or natural components favoring differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central amygdala (CeA) projections to hypothalamic and brain stem nuclei regulate the behavioral and physiological expression of fear, but it is unknown whether these different aspects of the fear response can be separately regulated by the CeA. We combined fluorescent retrograde tracing of CeA projections to nuclei that modulate fear-related freezing or cardiovascular responses with in vitro electrophysiological recordings and with in vivo monitoring of related behavioral and physiological parameters. CeA projections emerged from separate neuronal populations with different electrophysiological characteristics and different response properties to oxytocin. In vivo, oxytocin decreased freezing responses in fear-conditioned rats without affecting the cardiovascular response. Thus, neuropeptidergic signaling can modulate the CeA outputs through separate neuronal circuits and thereby individually steer the various aspects of the fear response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: During open heart surgery, so-called atrial chatter, a phenomenon due to right atria and/or caval collapse, is frequently observed. Collapse of the cava axis during cardiopulmonary bypass (CPB) limits venous drainage and may result downstream in reduced pump flow on (lack of volume) and upstream in increased after-load (stagnation), which in turn may both result in reduced or even inadequate end-organ perfusion. The goal of this study was to reproduce venous collapse in the flow bench. METHODS: In accordance with literature for venous anatomy, a caval tree system is designed (polyethylene, thickness 0.061 mm), which receives venous inflow from nine afferent veins. With water as medium and a preload of 4.4 mmHg, the system has an outflow of 4500 ml/min (Scenario A). After the insertion of a percutaneous venous cannula (23-Fr), the venous model is continuously served by the afferent branches in a venous test bench and venous drainage is augmented with a centrifugal pump (Scenario B). RESULTS: With gravity drainage (siphon: A), spontaneously reversible atrial chatter can be generated in reproducible fashion. Slight reduction in the outflow diameter allows for generation of continuous flow. With augmentation (B), irreversible collapse of the artificial vena cava occurs in reproducible fashion at a given pump speed of 2300 ± 50 RPM and a pump inlet pressure of -112 mmHg. Furthermore, bubbles form at the cannula tip despite the fact that the entire system is immersed in water and air from the environment cannot enter the system. This phenomenon is also known as cavitation and should be avoided because of local damage of both formed blood elements and endothelium, as well embolization. CONCLUSIONS: This caval model provides a realistic picture for the limitations of flow due to spontaneously reversible atrial chatter vs irreversible venous collapse for a given negative pressure during CPB. Temporary interruption of negative pressure in the venous line can allow for recovery of venous drainage. This know-how can be used not only for testing different cannula designs, but also for further optimizing perfusion strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biplots are graphical displays of data matrices based on the decomposition of a matrix as the product of two matrices. Elements of these two matrices are used as coordinates for the rows and columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of the scalar product. Because the decomposition is not unique, there are several alternative ways to scale the row and column points of the biplot, which can cause confusion amongst users, especially when software packages are not united in their approach to this issue. We propose a new scaling of the solution, called the standard biplot, which applies equally well to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. The standard biplot also handles data matrices with widely different levels of inherent variance. Two concepts taken from correspondence analysis are important to this idea: the weighting of row and column points, and the contributions made by the points to the solution. In the standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of the cases or sample units, which are weighted and usually standardized in some way unless the matrix contains values that are comparable in their raw form. The other set of points, usually the columns, is represented in accordance with their contributions to the low-dimensional solution. As for any biplot, the projections of the row points onto vectors defined by the column points approximate the centred and (optionally) standardized data. The method is illustrated with several examples to demonstrate how the standard biplot copes in different situations to give a joint map which needs only one common scale on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot readable. The proposal also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connexin 40 (Cx40) is expressed by the renin-producing cells (RSCs) of the kidneys and the endothelial cells of blood vessels. Cx40 null mice (Cx40(-/-)) feature a much increased renin synthesis and secretion, which results in chronic hypertension, and also display an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels and nitric oxide production. To discriminate the effect of Cx40 in renin secretion and vascular signaling, we targeted Cx40 to either the RSCs or the endothelial cells of Cx40 null mice. When compared with Cx40(-/-) controls, the animals expressing Cx40 in RSCs were less hypertensive and featured reduced renin levels, still numerous RSCs outside the wall of the afferent arterioles. In contrast, mice expressing Cx40 in the endothelial cells were as hypertensive as Cx40(-/-) mice, in spite of control levels of Cx37 and eNOS. Our data show that blood pressure is improved by restoration of Cx40 expression in RSCs but not in endothelial cells, stressing the prominent role of renin in the mouse hypertension linked to loss of Cx40.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and alpha-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse model.