904 resultados para ACCIDENTS, TRAFFIC
Resumo:
The aim of this paper is to identify and classify the numerous managerial issues encountered in the management of personnel in confined site construction. For the purpose of this research, a confined construction site is defined as a site where permanent works fit the site footprint, extending to levels above and/or below ground level, leaving spatial restrictions for other operations (e.g. plant and material movements, materials storage and temporary accommodation etc.) and require effective resource co-ordination beyond normal on-site management input. A literature review and analysis, case studies incorporating interviews and focus groups along with a questionnaire survey were used in order to gain a comprehensive insight into the issues in the management of personnel in a confined construction site environment. The following are the top five leading issues highlighted in the management of personnel in confined site construction; (1) Accidents due to an untidy site, (2) One contractor holding up another because of the lack of space, (3) A risk to personnel because of vehicular traffic on-site, (4) Difficult to facilitate several contractors at one work location, and (5) Numerous personnel working within the one space. In today’s modern environment, spatial restrictions are quickly becoming the norm in the industry. Therefore, the management of personnel on-site becomes progressively more difficult with the decrease in available space on-site. Where such environments exist, acknowledging the numerous issues highlighted above, aids site management in the supervision and co-ordination of personnel on-site, thus reducing accidents, increasing productivity and increase profit margins, in spatially restricted environments. As on-site management professionals successfully identify, acknowledge and counteract the numerous issues illustrated, the successful management of personnel on a confined construction site is achievable. By identifying the numerous issues, on-site management can proactively mitigate such issues through adopting counteractive measures and through successful identification of the traits identified.
Resumo:
In recent years unmanned vehicles have grown in popularity, with an ever increasing number of applications in industry, the military and research within air, ground and marine domains. In particular, the challenges posed by unmanned marine vehicles in order to increase the level of autonomy include automatic obstacle avoidance and conformance with the Rules of the Road when navigating in the presence of other maritime traffic. The USV Master Plan which has been established for the US Navy outlines a list of objectives for improving autonomy in order to increase mission diversity and reduce the amount of supervisory intervention. This paper addresses the specific development needs based on notable research carried out to date, primarily with regard to navigation, guidance, control and motion planning. The integration of the International Regulations for Avoiding Collisions at Sea within the obstacle avoidance protocols seeks to prevent maritime accidents attributed to human error. The addition of these critical safety measures may be key to a future growth in demand for USVs, as they serve to pave the way for establishing legal policies for unmanned vessels.
Resumo:
This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour.
Resumo:
Discrepancies in environmental budgets of dioxin-like compounds may be explained by emissions from accidents involving chlorinated organic chemicals. This source may have important implications for regulation inventories. © 1995 Nature Publishing Group.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
High speed downlink packet access (HSDPA) was introduced to UMTS radio access segment to provide higher capacity for new packet switched services. As a result, packet switched sessions with multiple diverse traffic flows such as concurrent voice and data, or video and data being transmitted to the same user are a likely commonplace cellular packet data scenario. In HSDPA, radio access network (RAN) buffer management schemes are essential to support the end-to-end QoS of such sessions. Hence in this paper we present the end-to-end performance study of a proposed RAN buffer management scheme for multi-flow sessions via dynamic system-level HSDPA simulations. The scheme is an enhancement of a time-space priority (TSP) queuing strategy applied to the node B MAC-hs buffer allocated to an end user with concurrent real-time (RT) and non-real-time (NRT) flows during a multi-flow session. The experimental multi- flow scenario is a packet voice call with concurrent TCP-based file download to the same user. Results show that with the proposed enhancements to the TSP-based RAN buffer management, end-to-end QoS performance gains accrue to the NRT flow without compromising RT flow QoS of the same end user session