936 resultados para 70-1


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed study of physical properties was made on core samples from Deep Sea Drilling Project Hole 504B. The measured properties are density, porosity, sonic velocity, electrical resistivity, and fluid permeability. Basalts from this young oceanic crust have higher density and sonic velocity than the average DSDP basalts. Porosity (and temperature) dependences of physical properties are given by V = Vo - a-phi; roo = roo-0 exp(E*/RT)phi**-q; k = k0' phi**2q-1; where V is the sonic velocity (km/s), Vo = 6.45 (km/s), a = 0.111 (km/s %), phi is the porosity (%), roo is the electrical resistivity (ohm m), roo-0 = 0.002 (ohm m), E* = 2.7 (Kcal/mol) for fresh basalts, RT has its usual meaning, q = 1.67 ± 0.27, k is the permeability, k0' = (1 to about 10) x 10**-12 (cm**2). Porosity distribution in the crust in this area is estimated by combining the seismic velocity distribution and velocity-porosity relation. Because of the rapid decrease in porosity with depth, resistivity increases and permeability decreases rapidly with depth. The decreasing rate of permeability with increasing depth is approximately given by k(cm**2) = 2 x 10**-10 exp(-z (km)/0.3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

About 150 basalt samples from Hole 504B, near the Costa Rica Rift were analyzed for sulfur content and sulfur-isotope composition. The basement in Hole 504B can be divided into an upper part, which has oxidative alteration (274.5-550 m below sea floor), and a lower part, which has nonoxidative alteration (550-835 m below sea floor) (the interval from 540 to 585 meters actually is transitional). This division is reflected in both the sulfur content and the sulfurisotope composition. Oxidative alteration of basalts by sea water at low temperatures has resulted in a depletion in sulfur in the upper part of the hole (mostly less than 600 ppm S) as compared to fresh sulfur-saturated oceanic tholeiites (900-1200 ppm S). High amounts of sulfur in the lower part of the hole are a result of precipitation of secondary pyrite under non-oxidative or weakly oxidative conditions from solutions which dissolved igneous sulfides. The average sulfur-isotope composition of the primary igneous sulfides is d34S = -0.01 per mil, which is close to the assumed mantle sulfur composition (d34S = 0 per mil. Pyrite and sulfate sulfur extracted together in a separate preparation step (as "pyrite-sulfate" sulfur) indicate addition of sea-water sulfate to the upper part of the basalts. The d34S of secondary pyrite isolated by hand-picking varies between -8.0 and +5.8 per mil; the "pyrite-sulfate" sulfur (d34S = -4.8 to +10.5 per mil), as well as that of the isolated pyrite, may have originated in the precipitation of pyrite from solutions containing sulfur from the dissolution of igneous sulfides, but addition of sulfur transported by hydrothermal solutions cannot be excluded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physical properties of basalts from Deep Sea Drilling Project Sites 504 and 505, south of the Costa Rica Rift, including wet-bulk density, water content, sonic velocity, and thermal conductivity, were measured on board D/V Glomar Challenger during Legs 69 and 70. The mean wet-bulk density is 2.90±0.06 g/cm**3, porosity 5.0±2.2%, sonic velocity 5.75±0.30 km/s, and thermal conductivity 1.67±0.09 W/m°K. Basalts from this young ocean crust (5.9 m.y.) have relatively low porosity and consequently high density and sonic velocity, as compared to average DSDP basalts. Some systematic trends in depth variation of physical properties were found: down to Core 40 in Hole 504B, grain densities were lower than those deeper in the hole, whereas porosity in the upper section was higher. This can be attributed either to differences in the flow type or in the nature of alteration of basalts at the different levels in the hole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shear-wave and compressional-wave velocities of 26 basalt samples collected at Site 504 during Deep Sea Drilling Project Legs 69 and 70 were measured at elevated confining pressures. The young basalts have higher velocities than average DSDP basalts, because of their lack of alteration. Measurements of sample porosity are combined with laboratory and in situ velocity measurements to yield estimates of total crustal porosity: 13% at the top of Layer 2, and very low porosity below a depth of 2.0 km.