957 resultados para 4 aminohippuric acid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of two polymorphs of the anhydrous cocrystal adduct of bis(quinolinium-2-carboxylate) DL-malic acid, one triclinic the other monoclinic and disordered, have been determined at 200 K. Crystals of the triclinic polymorph 1 have space group P-1, with Z = 1 in a cell with dimensions a = 4.4854(4), b = 9.8914(7), c = 12.4670(8)Å, α = 79.671(5), β = 83.094(6), γ = 88.745(6)deg. Crystals of the monoclinic polymorph 2 have space group P21/c, with Z = 2 in a cell with dimensions a = 13.3640(4), b = 4.4237(12), c = 18.4182(5)Å, β = 100.782(3)deg. Both structures comprise centrosymmetric cyclic hydrogen-bonded quinolinic acid zwitterion dimers [graph set R2/2(10)] and 50% disordered malic acid molecules which lie across crystallographic inversion centres. However, the oxygen atoms of the malic acid carboxylic groups in 2 are 50% rotationally disordered whereas in 1 these are ordered. There are similar primary malic acid carboxyl O-H...quinaldic acid hydrogen-bonding chain interactions in each polymorph, extended into two-dimensional structures but in l this involves centrosymmetric cyclic head-to-head malic acid hydroxyl-carboxyl O-H...O interactions [graph set R2/2(10)] whereas in 2 the links are through single hydroxy-carboxyl hydrogen bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The title compound, C18H12N6O6 was prepared from the reaction of 4-(phenyldiazenyl)aniline (aniline yellow) with picrylsulfonic acid. The dihedral angle formed by the two benzene rings of the diphenyldiazenyl ring system 6.55(13)deg. and that formed by the rings of the picrate-aniline ring system is 48.76(12)deg. The molecule contains an intramolecular aniline-nitro N-H...O hydrogen bond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of chondrogenic cells available locally is an, important factor in the repair process for cartilage defects. Previous studies demonstrated that the number of transplanted rabbit perichondrial cells (PC) remaining in a cartilage defect in vivo, after being carried into the site in a polylactic acid (PLA) scaffold, declined markedly within two days. This study examined the ability of in vitro culture of PC/PLA constructs to enhance subsequent biomechanical stability of the cells and the matrix content in an in vitro screening assay. PC/PLA constructs were analyzed after 1 h, 1 and 2 weeks of culture. The biomechanical adherence of PC to the PLA scaffold was tested by subjecting the PC/PLA constructs to a range of flow velocities (0.25-25 mm/s), spanning the range estimated to occur under conditions of construct insertion in vivo. The adhesion of PC to the PLA carrier was increased significantly by 1 and 2 weeks of incubation, with 25 mm/s flow causing a 57% detachment of cells after 1 h of seeding, but only 7% and 16% after I and 2 weeks of culture, respectively (p < 0.001). This adherence was associated with marked deposition of glycosaminoglycan and collagen. These findings suggest that pre-incubation of PC-laden PLA scaffolds markedly enhances the stability of the indwelling cells. (C) 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Methods. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and 3 H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated 3 H-proline. Results. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. Conclusion. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of pressure-tuning Raman spectroscopic, X-ray powder diffraction and solid-state 13C-NMR studies of selected dicarboxylate anions intercalated in a Mg-Al layered double hydroxide (talcite) lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid-state 13C-NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O), the octahedral complex cations lie on crystallographic inversion centres and are hydrogen-bonded through the coordinated waters to the substituted benzenesulfonate monoanions and the water molecules of solvation, and together with a carboxylic acid O-H...O(sulfonate) association, give a three-dimensional structure.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title anhydrous salt C4H12N+ C8H3Cl2O4-, the 4,5-dichlorophthalate monoanions have the common 'planar' conformation with the carboxyl groups close to coplanar with the benzene ring and with a short intramolecular carboxylic acid O-H...O hydrogen bond. A two-dimensional sheet structure is formed through aminium N-H...O(carboxyl) hydrogen-bonding associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title compound, C5H7N2+ C8H11O4-, the cis-monoanions associate through short carboxylic acid-carboxyl O-H...O hydrogen bonds [graph set C(7)], forming zigzag chains which extend along c and are inter-linked through pyridinium and amine N-H...O(carboxyl) hydrogen bonds giving a three-dimensional network structure.