910 resultados para 3D user Interfaces
Resumo:
Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
Open-source software systems have become a viable alternative to proprietary systems. We collected data on the usage of an open-source workflow management system developed by a university research group, and examined this data with a focus on how three different user cohorts – students, academics and industry professionals – develop behavioral intentions to use the system. Building upon a framework of motivational components, we examined the group differences in extrinsic versus intrinsic motivations on continued usage intentions. Our study provides a detailed understanding of the use of open-source workflow management systems in different user communities. Moreover, it discusses implications for the provision of workflow management systems, the user-specific management of open-source systems and the development of services in the wider user community.
Resumo:
Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.
Resumo:
The increase of powerful mobile devices has accelerated the demand for mobile videos. Previous studies in mobile video have focused on understanding of mobile video usage, improvement of video quality, and user interface design in video browsing. However, research focusing on a deep understanding of users’ needs for a pleasing quality delivery of mobile video is lacking. In particular, what quality-delivery mode users prefer and what information relevant to video quality they need requires attention. This paper presents a qualitative interview study with 38 participants to gain an insight into three aspects: influencing factors of user-desired video quality, user-preferred quality-delivery modes, and user-required interaction information of mobile video. The results show that user requirements for video quality are related to personal preference, technology background and video viewing experience, and the preferred quality-delivery mode and interactive mode are diverse. These complex user requirements call for flexible and personalised quality delivery and interaction of mobile video.
Resumo:
This paper reports an investigation of primary school children’s understandings about "square". 12 students participated in a small group teaching experiment session, where they were interviewed and guided to construct a square in a 3D virtual reality learning environment (VRLE). Main findings include mixed levels of "quasi" geometrical understandings, misconceptions about length and angles, and ambiguous uses of geometrical language for location, direction, and movement. These have implications for future teaching and learning about 2D shapes with particular reference to VRLE.
Resumo:
Video games have shown great potential as tools that both engage and motivate players to achieve tasks and build communities in fantasy worlds. We propose that the application of game elements to real world activities can aid in delivering contextual information in interesting ways and help young people to engage in everyday events. Our research will explore how we can unite utility and fun to enhance information delivery, encourage participation, build communities and engage users with utilitarian events situated in the real world. This research aims to identify key game elements that work effectively to engage young digital natives, and provide guidelines to influence the design of interactions and interfaces for event applications in the future. This research will primarily contribute to areas of user experience and pervasive gaming.